Perturbations of the Fine and Hyperfine Structure in the Pure Rotational Spectrum of VCl (X5Dr) DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department of Astronomy Steward Observatory Arizona Radio Observatory University of Arizona June 21, 2004
Why VCl ? Few vanadium compounds studied at high resolution Optical studies of VH, VO, VN, VF, VCl Only pure rotational spectra of any vanadium compound Microwave spectrum of VO (X4S-1/2) from 3-11 GHz (Suenram et al. 1991) Vanadium – many oxidation states Bonding trends across periodic table High melting point ~1900oC – can’t melt in Broida oven Laser ablation VOCl3 (l) or VCl4 (l) V oxidation states
Past Work on VCl Iacocca et al. (1970) first observed visible spectrum No ground state determined Ram, Bernath & Davis (2001) & Ram et al. (2003) Measured several subbands of E5D-X5D transition Identified the W = 1,2,3,4 subbands, but couldn’t resolve W = 0 Subbands not regularly spaced ab initio calculations showed a 5P state very close in energy to ground state Perturb the ground state W = 0,1,2,3 subbands
Gas-Phase Synthesis of VCl Add VCl4 Pressure: 1-2 mTorr 20 mTorr Ar gas also added AC discharge 200 W at 600 W
Energy Level Diagram for VCl (X5Dr) 5Dr ground state Four unpaired 3d electrons J = L + S Spin-orbit and spin-spin interactions Omega ladders W = 0, 1, 2, 3, 4 J ≥ W Lambda-doubling possible Vanadium hyperfine I(51V)= 7/2 F = J + I 80 lines max. per transition J W 3 4 2 1 X5Dr J F W J+3/2 J+1/2 J+7/2 J+5/2 J-5/2 J-7/2 J-1/2 J-3/2
V35Cl: J = 37 38 Pattern repeats in V37Cl
V35Cl: J = 37 38
Rotational Spectrum of VCl V35Cl (X5Dr) J = 37 38 W = 4 Lambda doubling collapsed * W = 3 W = 1 W = 2 Vanadium Hyperfine W = 0 Lambda Doubling Measured 10 rotational transitions of V35Cl and V37Cl
For more data, see Halfen & Ziurys 2005 J′ F′ J″ F″ nobs no-nc W = 0f W = 0e W = 3f W = 3e 33 30.5 32 29.5 322783.249 0.318 323846.350 0.260 327312.948 -0.011 327359.435 0.019 31.5 322777.661 0.315 323842.030 0.236 327311.123 0.037 327357.349 0.013 32.5 322772.001 0.213 323837.716 0.180 327309.132 -0.013 327355.173 -0.008 33.5 322766.355 0.077 323833.398 0.065 327307.164 0.027 327352.920 -0.033 34.5 322760.641 -0.195 323829.070 -0.132 327305.042 -0.021 327350.633 -0.018 35.5 322754.858 -0.625 323824.739 -0.423 327302.899 -0.022 327348.262 36.5 322749.084 -1.159 323820.403 -0.831 327300.700 -0.014 327345.809 -0.017 W = 1f W = 1e W = 4 28.5 325324.415 -0.201 327594.483 -0.026 327829.708 0.015 325323.342 -0.113 327593.228 -0.047 327826.230 -0.004 325322.183 -0.099 327592.031 -0.005 327822.602 0.006 325321.070 -0.029 327590.820 0.029 327818.785 0.005 325319.953 0.049 327589.566 0.026 327814.775 325318.764 0.066 327588.290 0.009 327810.613 -0.002 325317.576 0.096 327586.991 327806.250 -0.019 325316.229 -0.023 327585.569 -0.165 327801.746 0.000 W = 2f W = 2e 325574.237 -0.192 326662.066 -0.393 325571.695 -0.563 326660.437 -0.260 325569.134 -0.670 326658.839 -0.039 325566.543 -0.555 326657.139 0.085 325563.954 -0.220 326655.838 0.562 325561.309 0.242 326654.306 0.708 325558.668 0.853 326652.861 0.785 325555.986 1.532 326651.379 0.611 For more data, see Halfen & Ziurys 2005
Hyperfine Perturbations 1 2 3,4 5 6 7 8 Hyperfine Perturbations Hyperfine splittings in W = 1 Octets at lower frequencies 3 to 4 lines at higher frequencies For W = 1e, at J = 38 39 and J = 39 40, hyperfine spreads out to over 100-200 MHz Hyperfine splittings in W = 2 Regular octets for both lambda doublets At J = 39 40 & J = 40 41, hf spreads out over 100 MHz for W = 2e only Evidence for perturbing state at very low energy W = 2 W = 1e
Spectroscopic Analysis of VCl Hund’s case (c) scheme Each individual W component fit separately – Heff = Hrot + Hmhf Rotational constants agree well with Ram et al. (2003) h parameter doesn’t follow regular pattern – h = aL + (b+c)S Higher-order distortion constants, hH, needed for good fit ^ ^ ^ W B D H h hD hH rms 0f 4891.334(73) 0.000101(51) -1.88(12)E-07 4346(650) 7.06(12) 0.000966(42) 0.313 0e 4909.737(52) 0.001260(37) -1.091(85)E-07 3959(523) 6.08(10) 0.000806(34) 0.225 1f 4933.4969(36) 0.0020198(17) 276(89) -1.10(20) -0.000086(53) 0.070 1e 4976.5508(91) 0.006372(11) 2.288(41)E-07 354(67) -2.06(13) -0.000419(34) 0.046 2f 4940.461(20) 0.0035166(79) 4302(289) 4.82(37) -0.00026(22) 0.613 2e 4961.874(35) 0.005634(15) -6.33E-08b 4439(353) 4.58(55) -0.00111(28) 0.637 3f 4967.3942(76) 0.0037793(53) 1.22(12)E-08 437(31) -0.338(45) -0.0000208(58) 0.032 3e 4967.399(15) 0.003434(11) -5.24(25)E-09 456(28) -0.326(19) 0.067 4 4974.54493(48) 0.00351018(14) 835.9(8.6) -0.259(12) -0.0000058(16) 0.012 a In MHz. b Held Fixed.
Source of Hyperfine Perturbations A5Pr state perturbs W = 0, 1, 2, 3 components (DW = 0) Homogeneous spin-electronic perturbation W = 1 perturbed most A5P11/2mr2 L±S X5D1 f parity L-doubling components shifted lower in energy Nearby B5S- state (Ram et al. 2003) e parity components shifted to higher energy A5Pr state only ~500 cm-1 higher than X5Dr W = 1e & 2e components strongly interact Second-order spin-orbit/Fermi-contact cross term (L S)(I S) ± . .
Future Work Refine global case (a) fit for VCl Deperturbation analysis Aso = 1226 GHz = 41 cm-1 rms = 1.3 MHz w/o W = 1 Deperturbation analysis Measure spectra of more vanadium species VF (X5Dr or X5Pr) VO (X4S-) VN (X3Dr) VH (X5Dr)