DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry

Slides:



Advertisements
Similar presentations
June , th International Symposium on Molecular Spectroscopy Millimeter and Sub-millimeter Spectroscopy of CrCCH (X 6 Σ + ) Jie Min and L.M.
Advertisements

FOURIER TRANSFORM EMISSION SPECTROSCOPY AND AB INITIO CALCULATIONS ON WO R. S. Ram, Department of Chemistry, University of Arizona J. Liévin, Université.
June 26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of ZnS (X 1  + ) Lindsay N. Zack Lucy M. Ziurys Department.
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
THE NITROGEN ISOTOPE RATIO IN DENSE MOLECULAR CLOUDS Gilles Adande Lucy M. Ziurys Department of Chemistry, Department of Astronomy, Steward Observatory.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
June 22-26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of ZnO in the excited a 3  i State Lindsay N. Zack,
61 st Symposium on Molecular Spectroscopy June 22, 2006 Completing the 3d Metal Fluoride Series: Pure Rotational Spectroscopy of ZnF (X 2  + ) Michael.
Atomic Spectroscopy: Atomic Emission Spectroscopy Atomic Absorption Spectroscopy Atomic Fluorescence Spectroscopy * Elemental Analysis * Sample is atomized.
Millimeter-Wave Studies of the Isotopologues of IZnCH 3 (X 1 A 1 ) : Geometric Parameters and Evidence for Zinc Insertion M. P. BUCCHINO and L. M. ZIURYS.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
June 22, th Symp. on Molec. Spectrosc. Laboratory Detection of ClZnCH 3 (X 1 A 1 ): Further Evidence for Zinc Insertion Matthew P. Bucchino and.
The Millimeter/Submillimeter Spectrum of the CCP (X 2  r ) Radical DeWayne T. Halfen Steward Observatory, Arizona Radio Observatory, University of Arizona.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
June 18, nd Symp. on Molec. Spectrosc. The Pure Rotational Spectra of VN (X 3  r ) and VO (X 4  - ): A Study of the Hyperfine Interactions Michael.
June 22-26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of CrS (X 5  r ): Continued Studies of the 3d Transition.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
62 nd International Symposium on Molecular Spectroscopy June 18-22, 2007 The Pure Rotational Spectra of FeCN (X 6  i ) and FeNC (X 6  i ): It Had to.
A New E-Band (60 – 90 GHz) Fourier Transform Millimeter-wave Spectrometer DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department of Astronomy.
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
June 16-20, rd International Symposium on Molecular Spectroscopy Direct Measurements of the Fundamental Rotational Transitions of CD and 13 CH.
65 th International Symposium on Molecular Spectroscopy June 21, 2010 Lindsay N. Zack Brent J. Harris Matthew P. Bucchino Ming Sun Lucy M Ziurys Department.
63rd Symposium on Molecular Spectroscopy June 18, 2008 Submillimeter Spectroscopy of ZnO (X 1  + ) Lindsay N. Zack Robin L. Pulliam Lucy M. Ziurys Departments.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
June 21, th International Symposium on Molecular Spectroscopy Fourier-Transform Microwave Spectroscopy of FeCN (X 4  i ): Confirmation of the.
The Pure Rotational Spectrum of TiCl + (X 3  r ) by Velocity Modulation Spectroscopy DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department.
61 st Symposium on Molecular Spectroscopy June 19, 2006  -doubling in High Angular Momentum States: High Resolution Spectroscopy of CoF (X 3  i ) M.
June 25, th International Symposium on Molecular Spectroscopy Hyperfine Resolved Pure Rotational Spectroscopy of ScN, YN, and BaNH (X 1  + ):
June 20, rd International Symposium On Molecular Spectroscopy Microwave Spectrum And Structure Determination Of the CCP ( X 2 П Ω ) Radical Ming.
Fourier Transform Emission Spectroscopy of Some New Bands of ReN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ and P. F. Bernath.
June 22-26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of TiS (X 3  r ) in all Three Spin Components Robin.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
HIGH RESOLUTION SPECTROSCOPY OF THE B 2 A 1 - X 2 A 1 TRANSITION OF CaCH 3 and SrCH 3 P. M. SHERIDAN, M. J. DICK, J. G. WANG AND P. F. BERNATH University.
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Pure Rotational Spectra of the Rare Isotopologues of TiO (X 3 Δ r ) Andrew P. Lincowski, DeWayne T. Halfen, and Lucy M. Ziurys Department of Chemistry.
Dept. of Chemistry University of Arizona A. Janczyk L. M. Ziurys The Millimeter/Submillimeter Spectrum of AlSH (X 1 A) : Further Investigation of the Metal.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
Application of Sputtering Method to the Observation of Rotational Spectra of Metal-containing Molecules M.Tanimoto, E.Y.Okabayashi, F.Koto, T.Okabayashi.
OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY OF SrOH: THE 2 Π(000) – 2 Π(000) AND THE 2 Σ + (000) – 2 Π 1/2 (000) TRANSITIONS J.-G. WANG, P. M. SHERIDAN,
The Submillimeter/THz Spectrum of AlH (X 1 Σ + ), CrH (X 6 Σ + ), and SH + (X 3 Σ - ) DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry and.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Fourier Transform Emission Spectroscopy of New Visible Systems of NbN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ And P.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
The Pure Rotational Spectrum of KO
Jack C. Harms, Leah C. O’Brien,* and James J. O’Brien
Spectroscopy in support of parity nonconservation measurements: the A2Π-X2Σ+(0,0) of Barium Monofluoride Anh T. Le, Sarah Frey and Timothy C. Steimle Department.
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Kaitlin Womack, Taylor Dahms, Leah O’Brien Department of Chemistry
FT Microwave and MMW Spectroscopy of the H2-DCN Molecular Complex
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Bob Grimminger and Dennis Clouthier
Jinjun Liu, Ming-Wei Chen, John T. Yi,
MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO
Laser spectroscopy and ab initio calculations on TaF
The Pure Rotational Spectrum of FeO+ (X6S+)
Fourier Transform Emission Spectroscopy of CoH and CoD
Fourier Transform Microwave Spectroscopy Of Sc13C2 and Sc12C13C: Establishing an Accurate Structure Of ScC2 (X2A1) ~ Sc C Mark A. Burton, DeWayne T. Halfen,
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Michael A. Flory Shawn K. McLamarrah Lucy M. Ziurys
Presentation transcript:

Perturbations of the Fine and Hyperfine Structure in the Pure Rotational Spectrum of VCl (X5Dr) DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department of Astronomy Steward Observatory Arizona Radio Observatory University of Arizona June 21, 2004

Why VCl ? Few vanadium compounds studied at high resolution Optical studies of VH, VO, VN, VF, VCl Only pure rotational spectra of any vanadium compound Microwave spectrum of VO (X4S-1/2) from 3-11 GHz (Suenram et al. 1991) Vanadium – many oxidation states Bonding trends across periodic table High melting point ~1900oC – can’t melt in Broida oven Laser ablation VOCl3 (l) or VCl4 (l) V oxidation states

Past Work on VCl Iacocca et al. (1970) first observed visible spectrum No ground state determined Ram, Bernath & Davis (2001) & Ram et al. (2003) Measured several subbands of E5D-X5D transition Identified the W = 1,2,3,4 subbands, but couldn’t resolve W = 0 Subbands not regularly spaced ab initio calculations showed a 5P state very close in energy to ground state Perturb the ground state W = 0,1,2,3 subbands

Gas-Phase Synthesis of VCl Add VCl4 Pressure: 1-2 mTorr 20 mTorr Ar gas also added AC discharge 200 W at 600 W

Energy Level Diagram for VCl (X5Dr) 5Dr ground state Four unpaired 3d electrons J = L + S Spin-orbit and spin-spin interactions Omega ladders W = 0, 1, 2, 3, 4 J ≥ W Lambda-doubling possible Vanadium hyperfine I(51V)= 7/2 F = J + I 80 lines max. per transition J W 3 4 2 1 X5Dr J F W J+3/2 J+1/2 J+7/2 J+5/2 J-5/2 J-7/2 J-1/2 J-3/2

V35Cl: J = 37  38 Pattern repeats in V37Cl

V35Cl: J = 37  38

Rotational Spectrum of VCl V35Cl (X5Dr) J = 37  38 W = 4 Lambda doubling collapsed * W = 3 W = 1 W = 2 Vanadium Hyperfine W = 0 Lambda Doubling Measured 10 rotational transitions of V35Cl and V37Cl

For more data, see Halfen & Ziurys 2005 J′ F′ J″ F″ nobs no-nc W = 0f W = 0e W = 3f W = 3e 33 30.5 32 29.5 322783.249 0.318 323846.350 0.260 327312.948 -0.011 327359.435 0.019 31.5 322777.661 0.315 323842.030 0.236 327311.123 0.037 327357.349 0.013 32.5 322772.001 0.213 323837.716 0.180 327309.132 -0.013 327355.173 -0.008 33.5 322766.355 0.077 323833.398 0.065 327307.164 0.027 327352.920 -0.033 34.5 322760.641 -0.195 323829.070 -0.132 327305.042 -0.021 327350.633 -0.018 35.5 322754.858 -0.625 323824.739 -0.423 327302.899 -0.022 327348.262 36.5 322749.084 -1.159 323820.403 -0.831 327300.700 -0.014 327345.809 -0.017 W = 1f W = 1e W = 4 28.5 325324.415 -0.201 327594.483 -0.026 327829.708 0.015 325323.342 -0.113 327593.228 -0.047 327826.230 -0.004 325322.183 -0.099 327592.031 -0.005 327822.602 0.006 325321.070 -0.029 327590.820 0.029 327818.785 0.005 325319.953 0.049 327589.566 0.026 327814.775 325318.764 0.066 327588.290 0.009 327810.613 -0.002 325317.576 0.096 327586.991 327806.250 -0.019 325316.229 -0.023 327585.569 -0.165 327801.746 0.000 W = 2f W = 2e 325574.237 -0.192 326662.066 -0.393 325571.695 -0.563 326660.437 -0.260 325569.134 -0.670 326658.839 -0.039 325566.543 -0.555 326657.139 0.085 325563.954 -0.220 326655.838 0.562 325561.309 0.242 326654.306 0.708 325558.668 0.853 326652.861 0.785 325555.986 1.532 326651.379 0.611 For more data, see Halfen & Ziurys 2005

Hyperfine Perturbations 1 2 3,4 5 6 7 8 Hyperfine Perturbations Hyperfine splittings in W = 1 Octets at lower frequencies 3 to 4 lines at higher frequencies For W = 1e, at J = 38  39 and J = 39  40, hyperfine spreads out to over 100-200 MHz Hyperfine splittings in W = 2 Regular octets for both lambda doublets At J = 39  40 & J = 40  41, hf spreads out over 100 MHz for W = 2e only Evidence for perturbing state at very low energy W = 2 W = 1e

Spectroscopic Analysis of VCl Hund’s case (c) scheme Each individual W component fit separately – Heff = Hrot + Hmhf Rotational constants agree well with Ram et al. (2003) h parameter doesn’t follow regular pattern – h = aL + (b+c)S Higher-order distortion constants, hH, needed for good fit ^ ^ ^ W B D H h hD hH rms 0f 4891.334(73) 0.000101(51) -1.88(12)E-07 4346(650) 7.06(12) 0.000966(42) 0.313 0e 4909.737(52) 0.001260(37) -1.091(85)E-07 3959(523) 6.08(10) 0.000806(34) 0.225 1f 4933.4969(36) 0.0020198(17) 276(89) -1.10(20) -0.000086(53) 0.070 1e 4976.5508(91) 0.006372(11) 2.288(41)E-07 354(67) -2.06(13) -0.000419(34) 0.046 2f 4940.461(20) 0.0035166(79) 4302(289) 4.82(37) -0.00026(22) 0.613 2e 4961.874(35) 0.005634(15) -6.33E-08b 4439(353) 4.58(55) -0.00111(28) 0.637 3f 4967.3942(76) 0.0037793(53) 1.22(12)E-08 437(31) -0.338(45) -0.0000208(58) 0.032 3e 4967.399(15) 0.003434(11) -5.24(25)E-09 456(28) -0.326(19) 0.067 4 4974.54493(48) 0.00351018(14) 835.9(8.6) -0.259(12) -0.0000058(16) 0.012 a In MHz. b Held Fixed.

Source of Hyperfine Perturbations A5Pr state perturbs W = 0, 1, 2, 3 components (DW = 0) Homogeneous spin-electronic perturbation W = 1 perturbed most A5P11/2mr2 L±S X5D1 f parity L-doubling components shifted lower in energy Nearby B5S- state (Ram et al. 2003) e parity components shifted to higher energy A5Pr state only ~500 cm-1 higher than X5Dr W = 1e & 2e components strongly interact Second-order spin-orbit/Fermi-contact cross term (L S)(I S) ± . .

Future Work Refine global case (a) fit for VCl Deperturbation analysis Aso = 1226 GHz = 41 cm-1 rms = 1.3 MHz w/o W = 1 Deperturbation analysis Measure spectra of more vanadium species VF (X5Dr or X5Pr) VO (X4S-) VN (X3Dr) VH (X5Dr)