Chiral Condensates of the LR-Correlator and Large-NC QCD Samuel FRIOT

Slides:



Advertisements
Similar presentations
FSI Phases using CP Asymmetries from B Meson Decay Based on the work arXiv:1402:2978 Jihn E. Kim, Doh Young Mo, Soonkeon Nam Busan Particle Physics Workshop.
Advertisements

Confronting NLO BFKL Kernels with proton structure function data L. Schoeffel (CEA/SPP) Work done in collaboration with R. Peschanski (CEA/SPhT) and C.
Prediction with Regression
1 Regression Models & Loss Reserve Variability Prakash Narayan Ph.D., ACAS 2001 Casualty Loss Reserve Seminar.
1/03/09 De 89 à 98. 1/03/09 De 89 à 98 1/03/09 De 89 à 98.
1 Meson correlators of two-flavor QCD in the epsilon-regime Hidenori Fukaya (RIKEN) with S.Aoki, S.Hashimoto, T.Kaneko, H.Matsufuru, J.Noaki, K.Ogawa,
Su Houng Lee Theme: 1.Will U A (1) symmetry breaking effects remain at high T/  2.Relation between Quark condensate and the ’ mass Ref: SHL, T. Hatsuda,
Thermal phenomenological AdS/QCD 1. Thermal AdS/QCD 2. In-medium parameters 3. Chiral phase transition 4. Coupling constants Y. Kim (KIAS) with S.-J. Sin,
Structure of NLO corrections in 1/N C J. J. Sanz Cillero - Hadrons & Strings, Trento, July 21 st 2006 Structure of next-to-leading order corrections in.
Iain Stewart MIT Iain Stewart MIT Nonleptonic Decays and the Soft Collinear Effective Theory Super B Factory Workshop, Hawaii, 2004.
Balanced and constant functions as seen by Hadamard = Matrix M Vector V Vector S This is number of minterms “0” in the function.
11 Primakoff Experiments with EIC A. Gasparian NC A&T State University, Greensboro, NC For the PrimEx Collaboration Outline  Physics motivation:  The.
José A. Oller Univ. Murcia, Spain Order p 6 Chiral Couplings from the Scalar K  Form Factor José A. Oller Univ. Murcia, Spain Introduction Strangeness.
Nuclear Symmetry Energy from QCD Sum Rule Phys.Rev. C87 (2013) Recent progress in hadron physics -From hadrons to quark and gluon- Feb. 21, 2013.
QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.
The Standard Model prediction of the muon g-2 Massimo Passera Università and INFN Padova International Workshop “e + e - collisions from φ to ψ” Budker.
1 Preview At least two views are required to access the depth of a scene point and in turn to reconstruct scene structure Multiple views can be obtained.
In-Medium Studies of Omega, Nucleon and Open Charm with QCD Sum Rules Ronny Thomas Dresden, September 2007 Forschungszentrum Dresden-Rossendorf / TU Dresden.
Anomalous AV*V amplitude in soft-wall models J. J. Sanz Cillero Anomalous AVV* amplitude in soft-wall AdS/QCD J.J. Sanz-Cillero ( Bari - INFN) P. Colangelo,
Formula? Unit?.  Formula ?  Unit?  Formula?  Unit?
Imaginary Chemical potential and Determination of QCD phase diagram
Su Houng Lee Theme: 1.Will U A (1) symmetry breaking effects remain at high T 2.Relation between Quark condensate and the ’ mass Ref: SHL, T. Hatsuda,
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
1 Search for the Effects of the QCD Color Factor in High-Energy Collisions at RHIC Bedanga Mohanty LBNL  Motivation  Color Factors  Search for Color.
Ignasi Rosell Universidad CEU Cardenal Herrera 2007 Determining chiral couplings at NLO: and JHEP 0408 (2004) 042 [hep-ph/ ] JHEP 0701 (2007)
Ignasi Rosell Universidad CEU Cardenal Herrera IFIC, CSIC–Universitat de València Viability of Higgsless models within the Electroweak Precision Observables.
Chapter 6 (cont.) Difference Estimation. Recall the Regression Estimation Procedure 2.
Precise α s from  Decays(*) M. Davier, S. Descotes-Genon, A. Hoecker, B. Malaescu, and Z. Zhang Tau08 Workshop Novosibirsk, Sept (*) arxiv: ;
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
K.K. Gan The Ohio State University New Results on  Lepton July 17, 2003.
Composite resonance effects on the EW chiral lagrangian at NLO J.J. Sanz Cillero 1/13 Composite resonance effects on the EW chiral lagrangian at NLO J.J.
Yukawa and scalar interactions induced by scalar relevant for neutrino masss generation are: Since is assumed to be an exact symmetry of the model has.
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
Modification of nucleon spectral function in the nuclear medium from QCD sum rules Collaborators: Philipp Gubler(ECT*), Makoto Oka Tokyo Institute of Technology.
* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
Sterile neutrinos at the Neutrino Factory IDS-NF plenary meeting October 19-21, 2011 Arlington, VA, USA Walter Winter Universität Würzburg TexPoint fonts.
Spectral sum rules and duality violations Maarten Golterman (SFSU) work with Oscar Catà and Santi Peris (BNL workshop Domain-wall fermions at 10 years)
Hadrons from a hard wall AdS/QCD model Ulugbek Yakhshiev (Inha University & National University of Uzbekistan) Collaboration Hyun-Chul Kim (Inha University)
First Workshop on Quark-Hadron Duality and the Transition to pQCD, Laboratori Nazionali di Frascati, 6-8 June 2005 MATCHING MESON RESONANCES TO OPE IN.
Ignasi Rosell Universidad CEU Cardenal Herrera IFIC, CSIC–Universitat de València Revisiting the vector form factor at NLO in 1/N C QCD10, 29th June 2010.
Hadron 2007 Frascati, October 12 th, 2007 P.Faccioli, M.Cristoforetti, M.C.Traini Trento University & I.N.F.N. J. W. Negele M.I.T. P.Faccioli, M.Cristoforetti,
。 33 投资环境 3 开阔视野 提升竞争力 。 3 嘉峪关市概况 。 3 。 3 嘉峪关是一座新兴的工业旅游城市,因关得名,因企设市,是长城文化与丝路文化交 汇点,是全国唯一一座以长城关隘命名的城市。嘉峪关关城位于祁连山、黑山之间。 1965 年建市,下辖雄关区、镜铁区、长城区, 全市总面积 2935.
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
Ignasi Rosell Universidad CEU Cardenal Herrera IFIC, CSIC–Universitat de València The Oblique S Parameter in Higgsless Electroweak Models 18.
Low energy scattering and charmonium radiative decay from lattice QCD
Resonance saturation at next-to-leading order
Lattice College of William and Mary
Polarization in charmless B VV decays
A novel probe of Chiral restoration in nuclear medium
Extending the Linear Sigma Model to Nf = 3
Radiative Flavour Violation in the MSSM
Introduction of the density operator: the pure case
Handout 9 : The Weak Interaction and V-A
Hadronic Decays of the TAU Lepton within RESONANCE CHIRAL THEORY (RcT)
Work done in collaboration with D. Gómez-Dumm, A. Pich, J. Portolés
How to determine whether a given set of vectors
Large-NC resonance relations from partial wave analyses
Neutron EDM with external electric field
Dictionary Definition Explain in Your Own Words
有限密度・ 温度におけるハドロンの性質の変化
different predicted values (D)
Exact vector channel sum rules at finite temperature
Determination on F and D with SU(3) symmetry breaking effects and Δs distributions in the nucleon Teruya Yamanishi.
Collaborative Filtering Non-negative Matrix Factorization
Areas of Research … Causal Discovery Application Integration
Towards Understanding the In-medium φ Meson with Finite Momentum
Improved alpha_s from Tau Decays(*)
B. El-Bennich, A. Furman, R. Kamiński, L. Leśniak, B. Loiseau
On the Rare Decays David GREYNAT arXiv:hep-ph/ submitted to PLB
Remarks on mass difference between the charged and neutral K*(892)
Presentation transcript:

Chiral Condensates of the LR-Correlator and Large-NC QCD Samuel FRIOT in collaboration with D. GREYNAT and E de RAFAEL

The LR-Correlator with OPE in the chiral limit

Large-NC QCD [E. de Rafael EURIDICE ’03] Green’s functions are meromorphic functions of : If the OPE in QCD gives then by Cauchy’s formula, we have Here Therefore

1 vector V and 1 axial A 2 unknown parameters  M H A 1 vector V and 1 axial A with  M H A + V’ 2 vectors V, V’ 1 axial A and 1 zero  2 unknown parameters

MHA + V’    with  with 

MHA    with  with 

Results of the fits Constraints Values of the parameters:  z -2 -1 Values of the parameters:  z -2 -1 Values of the parameters:

Predictions Chiral Condensates: Matrix Elements: [Knecht et al. ’01] 

Results MHA MHA+V’ - 9.5  3 - 8.6  2.6 +16.2  5 +13.3  4 M7 M8 NDR Regularization NDR HV M7 0.11  0.03 0.67  0.2 0.12  0.04 0.62  0.19 M8 2.3  0.7 2.5  0.8 2.12  0.64 2.15  0.64

M7 M8 - 9.5  3 Aleph -7.7  0.8 +11  1 Opal -6.0  0.6 Davier et al. NDR HV MHA+V’  =2.45 - 8.6  2.6 +13.3  4 0.12  0.04 0.62  0.19 2.12  0.64 2.15  0.64 MHA - 9.5  3 +16.2  5 0.11  0.03 0.67  0.20 2.3  0.7 2.5  0.8 Aleph -7.7  0.8 +11  1 Opal -6.0  0.6 +7.5  1.3 Davier et al. -6.4  1.6 +8.7  2.4  =3.3  =2.8 Ioffe et al. -6.8  2.1 +7  4  =3.1  =3.4 Bijnens et al. -3.2  2.0 -12.4  9.0 0.24  0.03 0.37  0.08 1.2  0.8 1.3  0.8  =6.6  =12.1 Cirigliano et al. -4.45  0.7 -6.2  3.2 0.22  0.05 1.5  0.3  =4.7  =7.7 Rojo-Latorre -4  2 -12 +7-11  =5.3 =10.5 Narison 0.17  0.05 1.4  0.3

A Preliminary Analysis-1 Ioffe et al.

A Preliminary Analysis -2 Compatibility Constraints from and Davier et al. YES NO Ioffe et al. Bijnens et al. Cirigliano et al. Rojo-Latorre M7 M8 NDR HV Bijnens et al. 0.24  0.03 0.37  0.08 1.2  0.8 1.3  0.8 [0.94, 2.65] [1.06, 3.01] [0.48, 1.52] [0.52,1.64] Cirigliano et al. 0.22  0.05 1.5  0.3 [1.70, 2.31] [0.95, 1.30]

CP-PACS -Collaboration M7 M8 NDR HV MHA+V’  =2.45 0.12  0.04 0.62  0.19 2.12  0.64 2.15  0.64 MHA 0.11  0.03 0.67  0.20 2.3  0.7 2.5  0.8 Bhattacharya et al. 0.32  0.06 1.2  0.2 Donini et al. 0.11  0.04 0.18  0.06 0.51  0.1 0.62  0.12 RBC - Collaboration 0.27  0.03 1.1  0.2 CP-PACS -Collaboration 0.24  0.03 1.0  0.2 Garron et al. Preliminary Results 0.35  0.07 1.4  0.4