Volume 105, Issue 9, Pages (November 2013)

Slides:



Advertisements
Similar presentations
Volume 88, Issue 2, Pages (February 2005)
Advertisements

Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Volume 109, Issue 11, Pages (December 2015)
Water and Backbone Dynamics in a Hydrated Protein
Indrajeet Singh, Efrosyni Themistou, Lionel Porcar, Sriram Neelamegham 
Steve P. Meisburger, Suzette A. Pabit, Lois Pollack 
Lorenzo Cordone, Michel Ferrand, Eugenio Vitrano, Giuseppe Zaccai 
Volume 101, Issue 4, Pages (August 2011)
Volume 95, Issue 11, Pages (December 2008)
SAXS versus FRET: A Matter of Heterogeneity?
Refolding of a High Molecular Weight Protein: Salt Effect on Collapse
Volume 102, Issue 2, Pages (January 2012)
A.M. Stadler, I. Digel, G.M. Artmann, J.P. Embs, G. Zaccai, G. Büldt 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 104, Issue 1, Pages (January 2013)
Volume 103, Issue 7, Pages (October 2012)
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Theoretical and Computational Investigation of Flagellin Translocation and Bacterial Flagellum Growth  David E. Tanner, Wen Ma, Zhongzhou Chen, Klaus.
Folding of the Protein Domain hbSBD
Volume 98, Issue 1, Pages (January 2010)
Volume 106, Issue 6, Pages (March 2014)
An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils  Travis Hoppe,
Christopher B. Stanley, Tatiana Perevozchikova, Valerie Berthelier 
Fundamental Constraints on the Abundances of Chemotaxis Proteins
Static Light Scattering From Concentrated Protein Solutions II: Experimental Test of Theory for Protein Mixtures and Weakly Self-Associating Proteins 
Volume 96, Issue 2, Pages (January 2009)
Mechanical Distortion of Single Actin Filaments Induced by External Force: Detection by Fluorescence Imaging  Togo Shimozawa, Shin'ichi Ishiwata  Biophysical.
Steve P. Meisburger, Suzette A. Pabit, Lois Pollack 
Fast Motions of Key Methyl Groups in Amyloid-β Fibrils
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Volume 110, Issue 11, Pages (June 2016)
Macromolecular Crowding Modulates Actomyosin Kinetics
Gustav Persson, Per Thyberg, Jerker Widengren  Biophysical Journal 
Volume 105, Issue 10, Pages (November 2013)
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 84, Issue 6, Pages (June 2003)
Volume 111, Issue 7, Pages (October 2016)
Kazuya Hasegawa, Ichiro Yamashita, Keiichi Namba  Biophysical Journal 
Volume 103, Issue 2, Pages (July 2012)
Volume 93, Issue 12, Pages (December 2007)
Samuel T. Hess, Watt W. Webb  Biophysical Journal 
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Volume 96, Issue 5, Pages (March 2009)
Volume 109, Issue 3, Pages (August 2015)
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Thermodynamic Characterization of the Unfolding of the Prion Protein
Dynamics of Active Semiflexible Polymers
Domain Formation in Model Membranes Studied by Pulsed-Field Gradient-NMR: The Role of Lipid Polyunsaturation  Andrey Filippov, Greger Orädd, Göran Lindblom 
Alessandro Paciaroni, Stefania Cinelli, Giuseppe Onori 
Dynamics of tRNA at Different Levels of Hydration
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Martin Kurylowicz, Ching-Hsing Yu, Régis Pomès  Biophysical Journal 
Volume 97, Issue 9, Pages (November 2009)
Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives
Volume 110, Issue 7, Pages (April 2016)
Cell Growth and Size Homeostasis in Silico
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Volume 111, Issue 11, Pages (December 2016)
Volume 113, Issue 12, Pages (December 2017)
Localization Precision in Stepwise Photobleaching Experiments
Volume 113, Issue 10, Pages (November 2017)
Nicholas C. Darnton, Howard C. Berg  Biophysical Journal 
Alexander Spaar, Christian Münster, Tim Salditt  Biophysical Journal 
Volume 83, Issue 6, Pages (December 2002)
Volume 105, Issue 9, Pages (November 2013)
Volume 93, Issue 8, Pages (October 2007)
Demian Riccardi, Qiang Cui, George N. Phillips  Biophysical Journal 
Malin Persson, Elina Bengtsson, Lasse ten Siethoff, Alf Månsson 
Volume 110, Issue 12, Pages (June 2016)
Presentation transcript:

Volume 105, Issue 9, Pages 2157-2165 (November 2013) Correlation between Supercoiling and Conformational Motions of the Bacterial Flagellar Filament  Andreas M. Stadler, Tobias Unruh, Keiichi Namba, Fadel Samatey, Giuseppe Zaccai  Biophysical Journal  Volume 105, Issue 9, Pages 2157-2165 (November 2013) DOI: 10.1016/j.bpj.2013.09.039 Copyright © 2013 Biophysical Society Terms and Conditions

Figure 1 Structure of flagellin. (A and B) The L-type (A) and R-type (B) conformations (Protein Data Bank (PDB) structures 3A5X and 1UCU, respectively). The point mutations G426A and A449V, which induce the L- and R-type states, respectively, are drawn as blue spheres. (C and D) Models of the straight filament in the L-type (C) and R-type (D) conformations. The 11 protofilaments that compose the filament are drawn in different colors. Parameters of the filaments were taken from Yamashita et al. (12). To see this figure in color, go online. Biophysical Journal 2013 105, 2157-2165DOI: (10.1016/j.bpj.2013.09.039) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 2 Measured quasielastic spectra. (A) Wild-type, (B) R-type, and (C) L-type states of the bacterial filament using the TOFTOF spectrometer at the scattering vector q = 1.5 Å−1. The circles show measured data and the solid lines give the total fits (Eq. 2). The components correspond to the elastic fraction (dashed lines), the Lorentzian (dotted lines), and the linear background (dash-dotted lines). (Insets) The spectra on a logarithmic scale, illustrating the quality of the fits. To see this figure in color, go online. Biophysical Journal 2013 105, 2157-2165DOI: (10.1016/j.bpj.2013.09.039) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 3 (Upper) EISFs of the different samples. The lines are fits to the data using the Gaussian approximation. (Lower) Residuals. To see this figure in color, go online. Biophysical Journal 2013 105, 2157-2165DOI: (10.1016/j.bpj.2013.09.039) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 4 Measured elastic intensities. Experimental data obtained using the IN13 spectrometer of (A) the wild-type, (B) the R-type, and (C) the L-type bacterial filaments. The solid lines over the whole q2 range are fits with the Gaussian model using the q4 extension. The straight lines in the insets are linear fits to lnI(q) versus q2 using the Gaussian approximation in the initial slope. To see this figure in color, go online. Biophysical Journal 2013 105, 2157-2165DOI: (10.1016/j.bpj.2013.09.039) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 5 (A and B) MSDs of the bacterial filaments on the 0.1 ns timescale, determined by using the Gaussian approximation (A) and the Gaussian approximation with the q4 extension (B). (C) Variance, σ2, determined by using the Gaussian approximation with the q4 extension. To see this figure in color, go online. Biophysical Journal 2013 105, 2157-2165DOI: (10.1016/j.bpj.2013.09.039) Copyright © 2013 Biophysical Society Terms and Conditions