I. Gurkan, A. Ranganathan, X. Yang, W. E. Horton, M. Todman, J

Slides:



Advertisements
Similar presentations
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
Advertisements

B. Bai, Y. Li  Osteoarthritis and Cartilage 
Intra-articular injection of the cyclooxygenase-2 inhibitor parecoxib attenuates osteoarthritis progression in anterior cruciate ligament-transected knee.
The impact of early intra-articular administration of interleukin-1 receptor antagonist on lubricin metabolism and cartilage degeneration in an anterior.
Adiabatic rotating frame relaxation of MRI reveals early cartilage degeneration in a rabbit model of anterior cruciate ligament transection  J. Rautiainen,
Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density  W.D. Burnett, S.A. Kontulainen,
Changes in the T2 relaxation value of the tibiofemoral articular cartilage about 6 months after anterior cruciate ligament reconstruction using the double-bundle.
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
T1ρ and T2 relaxation times predict progression of knee osteoarthritis
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Glucosamine sulfate reduces experimental osteoarthritis and nociception in rats: association with changes of mitogen-activated protein kinase in chondrocytes 
Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants  R.J.H. Custers, W.J.A. Dhert, D.B.F. Saris,
R.E. Fransès, D.F. McWilliams, P.I. Mapp, D.A. Walsh 
W. Wang, S. Wei, M. Luo, B. Yu, J. Cao, Z. Yang, Z. Wang, M. B
Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage  Peggy M.
S. Ogawa, Y. Awaga, M. Takashima, A. Hama, A. Matsuda, H. Takamatsu 
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
Acute joint pathology and synovial inflammation is associated with increased intra- articular fracture severity in the mouse knee  J.S. Lewis, W.C. Hembree,
Differential expression of leptin and leptin's receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect.
Arthroscopic estimation of the extent of chondropathy
Angiogenesis in two animal models of osteoarthritis
Transglutaminase 2 is a marker of chondrocyte hypertrophy and osteoarthritis severity in the Hartley guinea pig model of knee OA  J.L. Huebner, K.A. Johnson,
The impact of forced joint exercise on lubricin biosynthesis from articular cartilage following ACL transection and intra-articular lubricin's effect.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rabbit  S. Laverty, C.A. Girard, J.M. Williams,
Intra-articular magnesium sulfate (MgSO4) reduces experimental osteoarthritis and nociception: association with attenuation of N-methyl-d-aspartate (NMDA)
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
Characterization of mature vs aged rabbit articular cartilage: analysis of cell density, apoptosis-related gene expression and mechanisms controlling.
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
Osteoarthritis-like damage of cartilage in the temporomandibular joints in mice with autoimmune inflammatory arthritis  S. Ghassemi-Nejad, T. Kobezda,
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Cyclodextrin polysulphate protects articular cartilage in experimental lapine knee osteoarthritis  S. Groeneboer, M.Sc., P. Pastoureau, M.D., Ph.D., E.
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
D.McK Ciombor, Ph.D., R.K Aaron, M.D., S Wang, M.D., B Simon, Ph.D. 
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Validation of a 40MHz B-scan ultrasound biomicroscope for the evaluation of osteoarthritis lesions in an animal model  Mathieu P. Spriet, D.V.M., Christiane.
Y. Sun, N. Haines, A. Roberts, M. Ruffolo, D. Mauerhan, J. Ingram, M
The BMP antagonists follistatin and gremlin in normal and early osteoarthritic cartilage: an immunohistochemical study  G. Tardif, Ph.D., J.-P. Pelletier,
Topographic and zonal distribution of tenascin in human articular cartilage from femoral heads: normal versus mild and severe osteoarthritis  K Veje,
Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilisation of the medial meniscus and increased joint laxity  J.P.
Quantitative MR T2 measurement of articular cartilage to assess the treatment effect of intra-articular hyaluronic acid injection on experimental osteoarthritis.
D.R. Rich, A.L. Clark  Osteoarthritis and Cartilage 
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion 
Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,
The validity of in vivo ultrasonographic grading of osteoarthritic femoral condylar cartilage: a comparison with in vitro ultrasonographic and histologic.
Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced.
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
K. Kuroki, C.R. Cook, J.L. Cook  Osteoarthritis and Cartilage 
Mevastatin reduces cartilage degradation in rabbit experimental osteoarthritis through inhibition of synovial inflammation  Y. Akasaki, M.D., S. Matsuda,
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis  E. Calvo, M.D., I. Palacios,
Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis  B.Y. Chan, E.S. Fuller, A.K. Russell, S.M. Smith, M.M. Smith,
The validity of in vitro ultrasonographic grading of osteoarthritic femoral condylar cartilage – a comparison with histologic grading  C.-Y. Tsai, M.D.,
Degenerative knee joint disease in mice lacking 3′-phosphoadenosine 5′-phosphosulfate synthetase 2 (Papss2) activity: a putative model of human PAPSS2.
The canine ‘groove’ model of osteoarthritis is more than simply the expression of surgically applied damage  Simon C. Mastbergen, M.Sc., Anne C. Marijnissen,
A. Sophocleous, A.E. Börjesson, D.M. Salter, S.H. Ralston 
M. L. Roemhildt, B. D. Beynnon, A. E. Gauthier, M. Gardner-Morse, F
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development  C. Pauli, R. Whiteside, F.L.
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Y. Akasaki, A. Hasegawa, M. Saito, H. Asahara, Y. Iwamoto, M.K. Lotz 
Osteoarthritis-like damage of cartilage in the temporomandibular joints in mice with autoimmune inflammatory arthritis  S. Ghassemi-Nejad, T. Kobezda,
Enhanced cell-induced articular cartilage regeneration by chondrons; the influence of joint damage and harvest site  L.A. Vonk, T.S. de Windt, A.H.M.
Presentation transcript:

Modification of osteoarthritis in the guinea pig with pulsed low-intensity ultrasound treatment  I. Gurkan, A. Ranganathan, X. Yang, W.E. Horton, M. Todman, J. Huckle, N. Pleshko, R.G. Spencer  Osteoarthritis and Cartilage  Volume 18, Issue 5, Pages 724-733 (May 2010) DOI: 10.1016/j.joca.2010.01.006 Copyright © 2010 Terms and Conditions

Fig. 1 Group E2/T4, medial compartment. Thionin stain. A. Left side, PLIUS treated. Medial tibial plateau: intact surface with mild loss of matrix staining in the superficial region. Medial femoral condyle: Intact surface with uniform matrix staining. B. Right side, control. Medial tibial plateau: extensive surface fibrillation with fissuring to the deep zone and superficial loss of matrix staining. Medial femoral condyle: intact surface with moderate loss of matrix staining. Osteoarthritis and Cartilage 2010 18, 724-733DOI: (10.1016/j.joca.2010.01.006) Copyright © 2010 Terms and Conditions

Fig. 2 Group E2/T4, lateral compartment. Thionin stain. A. Left side, PLIUS treated. Tibial plateau: intact surface, no loss of staining. Femoral condyle: intact surface, no loss of staining. B. Right side, control. Tibial plateau: extensive surface irregularities with mild loss of matrix staining. Femoral condyle: intact surface, no loss of staining. C and D. Expansion of indicated regions of Panels A and B. Osteoarthritis and Cartilage 2010 18, 724-733DOI: (10.1016/j.joca.2010.01.006) Copyright © 2010 Terms and Conditions

Fig. 3 Group E2/T10, medial compartment. Thionin stain. A. Left side, PLIUS treated. Tibial plateau: intact surface with moderate staining loss. Femoral condyle: intact surface with minimal matrix staining loss. B. Right side, control. Tibial plateau: small surface irregularity. Femoral condyle: fissuring to the middle zone and moderate loss of matrix staining. Osteoarthritis and Cartilage 2010 18, 724-733DOI: (10.1016/j.joca.2010.01.006) Copyright © 2010 Terms and Conditions

Fig. 4 Group E12/T6, Lateral compartment. Thionin stain. A. Left side, PLIUS treated. Lateral tibial plateau: intact surface and staining. Lateral femoral condyle: intact surface and staining. B. Right side, control. Lateral tibial plateau: fissuring to middle zone with focal mild matrix staining loss. Lateral femoral condyle: intact surface and uniform staining. C and D. Expansion of indicated regions of Panels A and B. Osteoarthritis and Cartilage 2010 18, 724-733DOI: (10.1016/j.joca.2010.01.006) Copyright © 2010 Terms and Conditions

Fig. 5 Percent of cells showing positive staining for IL-1ra, MMP-3, and MMP-13 in group E2/T4. On average, PLIUS treatment resulted in a trend for a smaller percentage of cells to express MMP-3, and a statistically significant reduction in the percentage of cells expressing MMP-13. Osteoarthritis and Cartilage 2010 18, 724-733DOI: (10.1016/j.joca.2010.01.006) Copyright © 2010 Terms and Conditions

Fig. 6 Representative results of immunostaining for TGF-β1 in the femoral condyles of group E2/T4. A. Expression of TGF-β1 is seen throughout the articular surface of non-treated joint. 4× fixed objective. B. Expansion of region of Panel A. Association of TGF-β1 expression with chondrocytes in clusters. 10× fixed objective. C. Representative region of a different untreated limb, again indicating widespread TGF-β1 expression. 4× fixed objective. D. Dramatic reduction of TGF-β1 expression seen in articular cartilage exposed to PLIUS treatment; shown is the treated joint contralateral to the control joint shown in Fig. 6(A). 10× fixed objective. In all animals, PLIUS-treated articular cartilage displayed minimal expression of TGF-β1. Osteoarthritis and Cartilage 2010 18, 724-733DOI: (10.1016/j.joca.2010.01.006) Copyright © 2010 Terms and Conditions