Sixth International Conference on Quarks and Nuclear Physics Exotic gifts of nature Paris, April 18th, 2012 Exotic gifts of nature
1980 - 2000 Paris, April 18th, 2012 Exotic gifts of nature
Starting point of a new era: 2003 X(3872) <2.3 MeV Ds0*(2317), JP=0+, <3.8 MeV Ds1(2460), JP=1+, < 3.5 MeV Paris, April 18th, 2012 Exotic gifts of nature
Charmonium DD cc mass spectrum Molecular cc + molecular Hibrid cc + Higher order Fock components DD 3872 cc mass spectrum X (3872), X (3940),Y (3940), Z (3940), Y(4260 ),... More complicated Simple color Fermi-Breit quark-antiquark scheme Si l a existencia de estos estado moleculares uno debe necesariamente estudiar lo que ocurre con los exoticos. Paris, April 18th, 2012 Exotic gifts of nature
EXOTIC states will appear! R.L. Jaffe, Phys. Rev. D15, 267 (1977) = 0) 0+,1+,2+ (ℓi=0) 0+,1+,2+ (L=1) Positive parity 0–,1– (ℓi0) 0–,1– (L=0) Negative parity qqqq (~ 4mq) qq (~ 2mq) L L+1 500-600 MeV qq 600 MeV Si l a existencia de estos estado moleculares uno debe necesariamente estudiar lo que ocurre con los exoticos. EXOTIC states will appear! Paris, April 18th, 2012 Exotic gifts of nature
The gift from nature to hadronic physicists !! They cannot camouflage themselves among charmonium states Paris, April 18th, 2012 Exotic gifts of nature
Solving the Schrödinger equation for QQnn 1 2 3 1 2 3 4 1,2 c 3,4 n ccnn Expansion of the trial wave function in terms of HH functions Generalize formalism of spherical harmonics (r, W) Difficult to construct functions with proper symmetry Solve Schrödinger equation with these base states. CQC model for the interaction Hyperspherical Harmonics Method J.V., et al., Phys. Rev. D79, 074010 (2009) The simplest system with a nontrivial color structure. Being formed by identical quarks Pauli principle has to be imposed. Paris, April 18th, 2012 Exotic gifts of nature
J.V., A.V., N. Barnea, Phys. Rev. D79, 074010 (2009) cncn. 3800 3900 4000 4100 4200 4300 4400 4500 4600 4q Energy M1M2 threshold ) V e M ( J.V., A.V., N. Barnea, Phys. Rev. D79, 074010 (2009) E Decir que estos resultados se han hecho con modelos y los resultados son “independientes” de modelo. + 1 + 2 + - 1 - 2 - + 1 + 2 + - 1 - 2 - ( 2 8 ) ( 2 4 ) ( 3 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) ( 2 8 ) ( 2 4 ) ( 3 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) I = I = 1 Paris, April 18th, 2012 Exotic gifts of nature
J.Vijande, A.V., Phys. Rev. C80, 035204 (2009) 1 2 3 1 2 3 4 1,2 c 3,4 n ccnn Physical channels J.Vijande, A.V., Phys. Rev. C80, 035204 (2009) Paris, April 18th, 2012 Exotic gifts of nature 9
x z y 1 2 3 4 1,2 c 3,4 n ccnn Bound. Unbound. Paris, April 18th, 2012 Exotic gifts of nature
Solving the Lippmann-Schwinger equation for the two meson system II Solving the Lippmann-Schwinger equation for the two meson system Same interacting potential as before Y ahora todo esto se puede rehacer con grados de libertad hadronicos. Paris, April 18th, 2012 Exotic gifts of nature
All positive parity channels up to JP=2+ have been analyzed. Only one channel, (I) JP = (0) 1+, is attractive enough to be bound. (I) JP = (0) 1+ D* DD* ¨ D c n N NN ¨ Paris, April 18th, 2012 Exotic gifts of nature
T. F. Caramés et al., Phys. Lett. B. 699, 291 (2011) (I) JP = (0) 1+ (I) (II) Meson-meson states Four-quark states PDD* PD*D* PDD Formalisms based on meson-meson and four-quark configurations are fully compatible if they incorporate all the relevants basis vectors (channels)! Paris, April 18th, 2012 Exotic gifts of nature
Candidates for observation (QQnn). Decay modes. Electromagnetic: E4q > M(D)+M(D) Weak: E4q < M(D)+M(D) Charm Sector: ccnn 1: (I) JP= (0) 1+: ΔE≈ [ – 80, – 10] MeV → E ≈ 3800 – 3865 MeV Bottom Sector: bbnn 1: (I) JP= (0) 1+: ΔE≈ [ -220, – 140] MeV → E ≈ 10380 – 10460 MeV Decaying weak. 2: (I) JP= (0) 0+: ΔE≈ [ -150, – 50] MeV → E ≈ 10400 – 10500 MeV Decaying electromagnetical. 3: (I) JP= (1) 3-: ΔE≈ [ -140, – 120] MeV → E ≈ 10880 – 10900 MeV 4: (I) JP= (0) 1-: ΔE≈ [ -10, 0] MeV → E ≈ 10550 – 10560 MeV Paris, April 18th, 2012 Exotic gifts of nature
Paris, April 18th , 2012 Exotic gifts of nature
Summary There is an increasing interest in hadron spectroscopy due to the advent of a large number of experimental data in several cases of difficult explanation. These data provide with the best laboratory for studying QCD in the so-called strong limit. We have the methods, so we can learn about the dynamics. Explicit exotic states with flavor components not reachable by standard quark-antiquark or three quark components are the best states to test our understanding of hadron spectroscopy Experimentalists: Exotic charmed four-quark systems may exist if our understanding of the dynamics does not hide some information. I hope you can answer this question to help in the advance of hadron spectroscopy. Theorists: All theoretical models agree on the existence of these kind of exotics. It is imperative to provide testable predictions in order to discriminate between models/approaches. Paris, April 18th, 2012 Exotic gifts of nature
Paris, April 18th, 2012 Exotic gifts of nature
Interacting potentials Parameters determined on meson spectroscopy BCN Confinement: Linear potential One-gluon exchange: Standard Fermi-Breit potential Confinement: Linear screened potential One-gluon exchange: Standard Fermi-Breit potential Scale dependent as Boson exchanges: Chiral symmetry breaking Not active for heavy quarks CQC Parameters determined on the NN interaction and meson/baryon spectroscopy Exotic gifts of nature
Charm mesons and charmonium Light mesons Strange meson Charm mesons and charmonium JV et al, J. Phys. G. 31, 481 Bottom mesons and bottomonium Quarkonia properties at high temperatures JV et al, Eur. Phys, Jour. A40, 89 Munich, June 16th, 2010 Exotic gifts of nature
Light baryons Heavy baryons Doubly Heavy baryons Strange baryons JV et al., Phys. Rev. C72, 025206 A. Valcarce et al., Eur. Phy. J. A37, 217 Doubly Heavy baryons Strange baryons JV et al., Phys. Rev. D70, 054022 Exotic gifts of nature
Ligth scalars cccc states Dsj Bsj Exotic gifts of nature N. Barnea et al., Phys. Rev. D73, 054004 JV et al., Phys. Rev. D72, 034025 Dsj Bsj JV et al., Phys. Rev. D73, 034002 JV et al., Phys. Rev. D77, 017501 Exotic gifts of nature
Non-strange two- baryon systems Strange two- baryon systems S=-2 two- A. Valcarce et al., Rep. Prog. Phys. 68, 965 (2005) H. Garcilazo et al., Phys. Rev. C76, 034001 (2007) Strange two- baryon systems Predictions A. Valcarce et al., Unpublished S=-2 two- baryon systems Exotic gifts of nature
Exotic gifts of nature
P. Gonzalez et al. qqq+MB Pure qqq Exotic gifts of nature
Exotic gifts of nature
Molecular states: Probability of physical channels vs. binding energy x z y 1 2 3 4 1,2 c 3,4 n ccnn We multiply the interaction between the light quarks by a fudge factor. This modifies the 4q energy but not the threshold Exotic gifts of nature
J. Vijande et al., Phys. Rev. D79, 074010 (2009) cncn (I=0). Theorerical Thresholds No deeply bound (compact) states in the ccnn sector. J. Vijande et al., Phys. Rev. D79, 074010 (2009) Exotic gifts of nature
+ One compact state in the ccnn sector Which is the difference? No compact states in the ccnn sector One compact state in the ccnn sector Which is the difference? c n – ccnn cncn D — J/ w + Exotic gifts of nature
Solving the Lippmann-Schwinger equation for the two meson system (II) Exotic gifts of nature
No charge partners of the X(3872) [diquark-antidiquark] DD* DD* – J/ JPC(I)=1++(0) T. Fernández-Caramés et al., Phys. Rev. Lett. 103, 222001 (2009) X(3872) No charge partners of the X(3872) [diquark-antidiquark] JP=1+ and I=1, coupled to J/ Repulsive Exotic gifts of nature