Elias M. NEEMAN and Thérèse R. HUET

Slides:



Advertisements
Similar presentations
The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group,
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Microwave spectroscopy of 2-furancarboxylic acid Roman A. Motiyenko, Manuel Goubet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University Lille.
Microwave spectrum of furfuryl alcohol Roman A. Motiyenko, Manuel Goubet, Thérèse R. Huet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University.
OSU International Symposium on Molecular Spectroscopy meeting, June 19-23, in Columbus, Ohio, USA Microwave spectra of 3-amino-2-propenenitrile (H 2 N-CH=CH-CN),
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
11 The THz spectrum of GlycolAldehyde M. Goubet, T.R. Huet, I. Haykal, L. Margulès PhLAM, CNRS – Université de Lille 1 O. Pirali, P. Roy AILES beamline,
High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene: [1,6]-naphthyridine. Sébastien Gruet, Manuel Goubet, Olivier.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Physique des Lasers, Atomes et Molécules
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
The Microwave Spectrum of the HCOOCD 2 H species of Methyl Formate L. H. Coudert, a T. R. Huet, b L. Margulès, b R. Motyenko, b and H. Møllendal c a LISA,
HIGH RESOLUTION SPECTROSCOPY OF THE TWO LOWEST VIBRATIONAL STATES OF QUINOLINE C 9 H 7 N O. PIRALI, Z. KISIEL, M. GOUBET, S. GRUET, M.-A. MARTIN-DRUMEL,
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
Formic Sulfuric Anhydride: A new chemical species with possible implications for atmospheric aerosol 1 Rebecca B. Mackenzie, Christopher T. Dewberry, and.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
MILLIMETRE-WAVE SPECTRUM OF ISOTOPOLOGUES OF ETHANOL FOR RADIO-ASTRONOMY Adam Walters, IRAP, Université de Toulouse, UPS-OMP-CNRS, France. Mirko Schäfer,
A NUCLEOSIDE UNDER OBSERVATION IN THE GAS PHASE: A ROTATIONAL STUDY OF URIDINE I. PEÑA, J.L. ALONSO Grupo de Espectroscopia Molecular. Unidad asociada.
THE ANALYSIS OF 2ν3 BAND OF HTO
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
International Symposium on Molecular Spectroscopy
Michael Iranpour, Minh Tran, Marcus Pereira, Jacob Stewart
~ ~ DETERMINATION OF THE TRANSITION DIPOLE MOMENT OF THE A - X
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Microwave and infrared spectra of urethane
Department of Chemistry
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Characterisation and Control of Cold Chiral Compounds
Carlos Cabezas and Yasuki Endo
Jacob T. Stewart Department of Chemistry, Connecticut College
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
L. Evangelisti,a,c C. Perez,b,c B.H. Patec
A.J. Barclay, S. Sheybani-Deloui, N. Moazzen-Ahmadi
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
MICROWAVE OBSERVATION OF THE VAN DER WAALS COMPLES O2-CO
The CP-FTMW Spectrum of Bromoperfluoroacetone
IMPACT FT-MW Spectroscopy of Organic Rings: Investigation of the
Aimee Bell, Omar Mahassneh, James Singer,
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
Microwave spectra of 1- and 2-bromobutane
THE STRUCTURE OF PHENYLGLYCINOL
LABORATORY AND ASTRONOMICAL DISCOVERY OF HYDROMAGNESIUM ISOCYANIDE
Fourier transform microwave spectra of n-butanol and isobutanol
A. Jabri, I. Kleiner, L. Margulès, R. Motyenko, J-C. Guillemin, E. A
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
Observation of Trans-Ethanol and
The rotational spectrum of the urea isocyanic acid complex
Fourier Transform Infrared Spectral
The Conformational Landscape of Serinol
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
N-METHYL INVERSION IN PSEUDO-PELLETIERINE
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
John Mullaney Newcastle University
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Elias M. NEEMAN and Thérèse R. HUET Isotopic substitutions unveiled the identification of the most stable conformer of fenchol and of its water complex Elias M. NEEMAN and Thérèse R. HUET UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, University of Lille, CNRS, F-59000 Lille, France.

Atmospheric interest Some facts about BVOCs: Aerosol Formation BCOVs lifetime is short Play a major role in atmospheric chemistry Oxidation and degradation products – complexity Rare information's studies concerning monoterpenes in gas phase ((C5H8)n, n>1) Fenchol + Humidity Secondary VOCs Oxidation O3 NOx OH VOCs Emission ≈ 1150 TgC.yr -1 ≈ 100 TgC.yr -1 Isoprene Monoterpene Singer, B. C. et al. Atmos. Environ. 40, 2006, 6696−6710. Rizzo, L. V. et al. J. Atmos. Environ. 2010, 44, 503−511. Hoffmann, T. et al. J. Atmos. Chem. 1997, 26, 189−222. Kotzias, D. et al.. Environ. Chem. 1989, 20−1, 95−99. Biogenic Anthropogenic ISMS – june 2018

Fenchol Chemical formula (C10H18O). Emitted into the atmosphere by several biogenic sources. Emitted also by panel fibers. Exist as tow stereoisomers endo- et exo-fenchol. Scan de SEP MP2/6-311g N. Yassaa et al. Atmospheric Environment, 34(17) : 2809–2816, 2000. AG McDonald et al. Holz als Roh-und Werkstoff, 62(4) : 291–302, 2004. Melissa GD Baumann et al. Forest products journal, 50(9) : 75, 2000. ISMS – june 2018

Fenchol Results of several optimizations Endo-fenchol Exo-fenchol   Endo-fenchol Exo-fenchol MP2/Basis set 1EF 2EF 3EF 1XF 2XF 3XF 6-311G 0.7 0.0 4.5 0.8 5.0 6-311++G(d,p)a 0.03 2.7 1.4 4.3 6-311++G(2df,p)a 0.2 2.4 1.2 3.6 cc-pVTZ 0.3 1.9 aug-cc-pVTZ 2.0 1.3 3.4 (a) including ZPE correction ISMS – june 2018

MB-FP-FTMW Spectroscopy Spectral range: 1,7-20 GHz High resolution: FWHM~15 kHz Sensibility : 10-10 cm-1 Accuracy : < 1 kHz Trot = 1-5 K π/2 condition: τ= π 2 ħ με Pulsed supersonic jet of a gas mixed with Neon Interaction between the microwave pulse and the jet, associated with a maximal macroscopic polarization at π/2 condition Relaxation of the mixture and detection of the decay of this polarization with time (FID). Treatment of the signal by Fourrier transform operation to obtain the spectrum as a function of frequency A high finesse cavity enhances the signal => 2 Doppler components S. Kassi et al. J. Mol. Struct. 517-518, 375 (2000) ; M. Tudorie, et al. J. Chem. Phys., 134 (2011), p. 074314 ISMS – june 2018

Results : fenchol Exo-fenchol Endo-fenchol SPFIT / SPCAT. Fenchol (Sigma-Aldrich ≥ 96%) Heated nozzle 373 K 4.5 bars of Ne Repetition rate 1,5 Hz Endo-fenchol 1 or 2E-F ??? Exo-fenchol 1XF SPFIT / SPCAT. Semi-rigid Watson’s Hamiltonian A reduction (J = 8 and Ka = 4). SPFIT / SPCAT. Hamiltonien semi-rigide de Watson dans la réduction (A) (J = 9 and Ka = 5). Constant Exp. (G.S.) MP2 (1EF) MP2 (2EF) A /MHz 1520.225823(63) -0.3% -0.5% B /MHz 1097.367672(37) -1.0% -0.4% C /MHz 983.704765(33) -0.1% -0.6% ΔJ /kHz 0.04410(35) 15.8% 10.0% ΔJK /kHz -0.0294(17) -25.5% -69.0% ΔK /kHz 0.0567(20) -3.7% -25.7% δJ /kHz 0.00626(17) 20.1% 15.2% δK /kHz 0.1364(26) 42.9% 23.4% N 114 transitions RMS=1.5 kHz Constant Exp. (G.S.) MP2 (1XF) MP2 (2XF) A /MHz 1494.88444(30) -0.4% -0.5% B /MHz 1201.81175(13) -0.6% -0.8% C /MHz 901.905933(74) ΔJ /kHz 0.0285(12) -69.5% -67.4% ΔJK /kHz - -0.0561 -0.0572 ΔK /kHz 0.035(14) 33.7% 28.0% δJ /kHz 0.00626(71) 42.5% δK /kHz 0.023 0.024 N 42 transitions RMS=1.2 kHz 7 5 3 - 6 4 3 4 2 2 - 3 2 1 ISMS – june 2018

Endo-Fenchol : which conformer ? quadrupolar hyperfine Constants D Deuteration 144 hyperfine components analysed ISMS – june 2018

Endo-Fenchol with Deuterated hydroxyl 1EF 2EF R(OH) is shortened for 1EF H/D Coordinate Experiment MP2/6-311++G(d,p) Angström rs 1EF 2EF a ±0.6395 (24) 0.655 0.552 b ±2.4853 ( 6) -2.582 -2.574 c ±0.9463 (16) -0.670 -0.752 ISMS – june 2018

Conformer 2EF is observed Endo-Fenchol : 1EF/2EF OH Exp. 1EF 2EF B-C (MHz) 113.7 123.6 112.7 OD Exp. 1EF 2EF B-C (MHz) 123.3 134.8 124.1 Exp. 1EF Conformer 2EF is observed 2EF ISMS – june 2018

Complex Endo-fenchol – H2O 2EF 1EF 3EF Which conformer will complex with water ??? ISMS – june 2018

Complex Endo-fenchol – H2O Conformational change due to water ??? Quantum chemical calculations for all the possible conformers 1EF-1w 1.5 kJ/mol 3EF-1w 0 kJ/mol 2EF-1w 3.3 kJ/mol 1EF-1w’ 2.5 kJ/mol Conformational change due to water ??? ISMS – june 2018

Complex Endo-fenchol – H2O Constant Exp. (G.S.) MP2 (3EF-1w) 6 -311++G(d,p) A /MHz 1210.91654(14) 1225.6 B /MHz 752.900591(78) 761.4 C /MHz 622.335817(60) 630.0 ΔJ /kHz 0.08308(31) - ΔJK /kHz 0.2412(29) ΔK /kHz -0.1445(18) δJ /kHz 0.01321(17) δK /kHz 0.0619(33) N 95 transitions RMS 1.7 kHz One conformer was observed ISMS – june 2018

Multi-substitution for endo-fenchol - Water EF-OD:HOD EF-OD:D2O EF-OH:D2O EF-OD:DOH A 1196.021(48) 1192.798891(25) 1202.305271(186) 1197.529(101) 1207.277(38)  B 729.3244(77) 721.0172439(21) 724.4326151(13) 740.386(47) 744.0156(183)  C 606.17071(21) 599.7652761(61) 600.8098827(6) 614.3077(131) 615.4451(51)  rs structure ISMS – june 2018

Conformational change rs structure of water hydrogens in Green Calculated structure of water hydrogens in silver 3EF-1w is the observed conformer ISMS – june 2018

Conclusion Microwave spectroscopy combined with quantum chemistry calculations is a powerful tool for studying molecular structure in the gas phase. We have unveiled the gas-phase structure of fenchol, by studying the deuterated species. In this study we unveiled also the structure of the complex endo fenchol - Water. The observed water complex is associated with the highest energy isolated conformer. Our conclusion are confirmed experimentally. ISMS – june 2018

It is a contribution to the CPER research Project CLIMIBIO. The present work was funded by the French ANR Labex CaPPA through the PIA (contract ANR-11-LABX-0005-01), by the Regional Council Hauts de France, by the European Funds for Regional Economic Development, and by the French Ministère de l’Enseignement Supérieur et de la Recherche. It is a contribution to the CPER research Project CLIMIBIO. ISMS – june 2018