Extracellular Glutamate in the Nucleus Accumbens Is Nanomolar in Both Synaptic and Non-synaptic Compartments  Delia N. Chiu, Craig E. Jahr  Cell Reports 

Slides:



Advertisements
Similar presentations
Volume 86, Issue 5, Pages (June 2015)
Advertisements

NMDA Receptor Contributions to Visual Contrast Coding
Volume 23, Issue 8, Pages (May 2018)
Maturation of a Recurrent Excitatory Neocortical Circuit by Experience-Dependent Unsilencing of Newly Formed Dendritic Spines  Michael C. Ashby, John T.R.
Christian Rosenmund, Charles F Stevens  Neuron 
Margaret Lin Veruki, Espen Hartveit  Neuron 
Jason R. Chalifoux, Adam G. Carter  Neuron 
Polarity of Long-Term Synaptic Gain Change Is Related to Postsynaptic Spike Firing at a Cerebellar Inhibitory Synapse  Carlos D Aizenman, Paul B Manis,
Volume 68, Issue 4, Pages (November 2010)
Volume 14, Issue 11, Pages (March 2016)
Long-Term Depression of mGluR1 Signaling
Volume 96, Issue 1, Pages e4 (September 2017)
First Node of Ranvier Facilitates High-Frequency Burst Encoding
Volume 75, Issue 6, Pages (September 2012)
Aleksander Sobczyk, Karel Svoboda  Neuron 
Volume 22, Issue 1, Pages (January 2018)
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
M1 Muscarinic Receptors Boost Synaptic Potentials and Calcium Influx in Dendritic Spines by Inhibiting Postsynaptic SK Channels  Andrew J. Giessel, Bernardo.
David Zenisek, Gary Matthews  Neuron 
Dopaminergic Modulation of Axon Initial Segment Calcium Channels Regulates Action Potential Initiation  Kevin J. Bender, Christopher P. Ford, Laurence.
Volume 16, Issue 6, Pages (August 2016)
Jason Jacoby, Yongling Zhu, Steven H. DeVries, Gregory W. Schwartz 
Volume 23, Issue 2, Pages (June 1999)
Volume 23, Issue 8, Pages (May 2018)
Glutamate Receptor Modulation Is Restricted to Synaptic Microdomains
Rebecca S. Jones, Reed C. Carroll, Scott Nawy  Neuron 
Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System  Yangling Mu, Mu-ming Poo  Neuron 
SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells  Gen Ohtsuki, Claire Piochon, John P. Adelman,
Volume 68, Issue 5, Pages (December 2010)
Volume 14, Issue 11, Pages (March 2016)
Functional Distinctions between Spine and Dendritic Synapses Made onto Parvalbumin- Positive Interneurons in Mouse Cortex  Laura Sancho, Brenda L. Bloodgood 
Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens  Immani Swapna, Brian Bondy, Hitoshi Morikawa  Cell.
Volume 123, Issue 1, Pages (October 2005)
Christine Grienberger, Xiaowei Chen, Arthur Konnerth  Neuron 
Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors  Shannon J. Moore, Donald C. Cooper,
The Life Cycle of Ca2+ Ions in Dendritic Spines
Dario Brambilla, David Chapman, Robert Greene  Neuron 
Increased Persistent Sodium Current Causes Neuronal Hyperexcitability in the Entorhinal Cortex of Fmr1 Knockout Mice  Pan-Yue Deng, Vitaly A. Klyachko 
Endocannabinoids Mediate Neuron-Astrocyte Communication
Manami Yamashita, Shin-ya Kawaguchi, Tetsuya Hori, Tomoyuki Takahashi 
Volume 16, Issue 3, Pages (March 1996)
A Novel Form of Local Plasticity in Tuft Dendrites of Neocortical Somatosensory Layer 5 Pyramidal Neurons  Maya Sandler, Yoav Shulman, Jackie Schiller 
Timescales of Inference in Visual Adaptation
Volume 78, Issue 6, Pages (June 2013)
Volume 27, Issue 3, Pages e5 (April 2019)
Stephan D. Brenowitz, Wade G. Regehr  Neuron 
Rapid State-Dependent Alteration in Kv3 Channel Availability Drives Flexible Synaptic Signaling Dependent on Somatic Subthreshold Depolarization  Matthew.
Volume 97, Issue 6, Pages e3 (March 2018)
NMDA Receptor Contributions to Visual Contrast Coding
Calcium Release from Stores Inhibits GIRK
Attila Losonczy, Jeffrey C. Magee  Neuron 
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
Serotonergic Modulation of Sensory Representation in a Central Multisensory Circuit Is Pathway Specific  Zheng-Quan Tang, Laurence O. Trussell  Cell Reports 
Stephanie Rudolph, Linda Overstreet-Wadiche, Jacques I. Wadiche  Neuron 
Andrea McQuate, Elena Latorre-Esteves, Andres Barria  Cell Reports 
Volume 85, Issue 3, Pages (February 2015)
Strong G-Protein-Mediated Inhibition of Sodium Channels
Jeffrey S Diamond, Dwight E Bergles, Craig E Jahr  Neuron 
Volume 1, Issue 5, Pages (May 2012)
Zare Melyan, Howard V. Wheal, Barrie Lancaster  Neuron 
Attila Losonczy, Jeffrey C. Magee  Neuron 
Xiaowei Chen, Nathalie L. Rochefort, Bert Sakmann, Arthur Konnerth 
Christian Rosenmund, Charles F Stevens  Neuron 
Sensory-Evoked Intrinsic Optical Signals in the Olfactory Bulb Are Coupled to Glutamate Release and Uptake  Hirac Gurden, Naoshige Uchida, Zachary F.
Alexandre Mathy, Beverley A. Clark, Michael Häusser  Neuron 
Nonlinear Regulation of Unitary Synaptic Signals by CaV2
Alexandra B Nelson, Claudia M Krispel, Chris Sekirnjak, Sascha du Lac 
Adam G. Carter, Bernardo L. Sabatini  Neuron 
Volume 54, Issue 1, Pages (April 2007)
Volume 68, Issue 4, Pages (November 2010)
Presentation transcript:

Extracellular Glutamate in the Nucleus Accumbens Is Nanomolar in Both Synaptic and Non-synaptic Compartments  Delia N. Chiu, Craig E. Jahr  Cell Reports  Volume 18, Issue 11, Pages 2576-2583 (March 2017) DOI: 10.1016/j.celrep.2017.02.047 Copyright © 2017 The Author(s) Terms and Conditions

Cell Reports 2017 18, 2576-2583DOI: (10.1016/j.celrep.2017.02.047) Copyright © 2017 The Author(s) Terms and Conditions

Figure 1 Standing NMDAR-Mediated Current in MSNs Reflects Nanomolar Glutamate (A) Current traces from an MSN voltage-clamped at +40 mV aligned to baseline (dashed line) show inhibition of a standing current by 100 μM D-AP5 and outward current evoked by 5 μM NMDA. (B) The current blocked by 100 μM D-AP5 was 0.87% ± 0.13% of maximal NMDA current (n = 19). (C) The concentration of glutamate that corresponds to the D-AP5-sensitive current is 25.6 nM ± 3.2 nM in juvenile rats (P15–P22, n = 19) and 31.7 nM ± 8.7 nM in adult rats (8–12 weeks, n = 8). n.s., not significant. In summary graphs, mean values (±SEM) are indicated in black; data from individual cells are indicated in gray. Cell Reports 2017 18, 2576-2583DOI: (10.1016/j.celrep.2017.02.047) Copyright © 2017 The Author(s) Terms and Conditions

Figure 2 Variance Analysis of Calcium Signals Reveals NMDAR Detection of glue at MSN Spines (A) Top: 2PLSM image of MSN filled with Alexa Fluor 594 and Fluo-5F. Scale bar, 20 μm. Middle: MSN dendritic spine and shaft showing line scan position (dashed line). Scale bar, 2 μm. Bottom: line scan showing fluorescence in the green channel increasing sharply during depolarization in the spine but not the dendrite. Timing of depolarization and shutter opening indicated above. (B) Fluo-5F fluorescence (upper traces, average in black) and variance (lower traces) from 320 trials from the dendrite shaft and spine shown in (A). Symbols indicate the times used to calculate baseline (open) and step (closed) fluorescence and variance. Predicted variance (dashed line) reflects the sum of dark noise and shot noise of the mean fluorescence signal. Timing of depolarization and shutter opening are indicated as in (A). (C) Baseline (open symbols) and step (closed symbols) variance versus mean fluorescence for the spine (triangles) and dendrite shaft (circles) shown in (A). Measurements of pipette fluorescence (squares) reflect shot noise; the slope of the line fit (green) was used to calculate predicted variance. Variance due to dark noise is indicated by a dashed line. (D) Summary graphs show measured variance normalized to predicted variance in spines and dendrite shafts. D-AP5 reduced step variance in spines, but not dendrite shafts, and did not affect baseline variance. Data are represented as mean ± SEM; individual pairs are in gray; ∗∗p = 0.004. (E) Removal of three of 320 trials shown in (B) greatly reduced step variance for the spine. The variance of the remaining trials is predicted by shot noise, as indicated also in (C) with a closed diamond. Cell Reports 2017 18, 2576-2583DOI: (10.1016/j.celrep.2017.02.047) Copyright © 2017 The Author(s) Terms and Conditions

Figure 3 glue at Spines Remains Nanomolar with Uptake Blocked (A) Current traces from an MSN voltage-clamped at +40 mV during application of 100 μM DL-TBOA and 5 μM NMDA. (B) Steady-state currents evoked by 100 μM TBOA corresponded to activation by 123.2 nM ± 10.5 nM glutamate in juvenile rats (n = 16) and 142.5 nM ± 21.2 nM in adult rats (n = 4). n.s., not significant. (C) The average frequency of NMDAR-mediated calcium transients increased in 100 μM DL-TBOA. In each condition, the sum of trials that showed NMDAR-mediated calcium transients divided by the sum of all trials is denoted by the gray lines (control: 78/10,513 = 0.74%; DL-TBOA: 55/1,709 = 3.22%). ∗∗∗p = 0.0008. (D) Normalized baseline fluorescence in 20 μM NMDA and 100 μM DL-TBOA in spines (triangles) and dendrites (circles). (E) Frame scans from the green channel during application of 20 μM NMDA (top) and 100 μM DL-TBOA (bottom). Drug application duration indicated by the bars above the images. Vhold = −70 mV throughout. Scale bar, 2 μm. (F) Current traces from an MSN voltage-clamped at +40 mV during application of 100 μM DL-TBOA and 100 μM DL-TBOA plus 1 μM glutamate. In summary graphs, mean values (±SEM) are indicated in black; data from individual cells are indicated in gray. Cell Reports 2017 18, 2576-2583DOI: (10.1016/j.celrep.2017.02.047) Copyright © 2017 The Author(s) Terms and Conditions

Figure 4 MSNs Depolarize in the Equivalent of 0.5 μM Glutamate Voltage traces from MSNs recorded in the absence of TTX, picrotoxin, NBQX, and d-serine. Application of 20 μM NMDA, equipotent to 0.5 μM glutamate, led to firing and sustained depolarization. In the same cell, application of 100 μM DL-TBOA resulted in a peak depolarization of 7 mV. Cell Reports 2017 18, 2576-2583DOI: (10.1016/j.celrep.2017.02.047) Copyright © 2017 The Author(s) Terms and Conditions