SQL: The Query Language (Part III)

Slides:



Advertisements
Similar presentations
SQL: The Query Language Part 2
Advertisements

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 SQL: Queries, Programming, Triggers Chapter 5 Modified by Donghui Zhang.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 SQL: Queries, Programming, Triggers Chapter 5.
Introduction to Database Systems 1 SQL: The Query Language Relation Model : Topic 4.
1 SQL: Structured Query Language (‘Sequel’) Chapter 5.
SQL: Queries, Constraints, Triggers
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 SQL: Queries, Constraints, Triggers Chapter 5.
Database Management Systems 1 Raghu Ramakrishnan SQL: Queries, Programming, Triggers Chpt 5.
1 "A mind once stretched by new thoughts can never regain its original shape.” -- Albert Einstein Prove that each positive integer has a multiple that.
SQL.
SQL: The Query Language Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein and etc for some slides.
SQL Part II: Advanced Queries. 421B: Database Systems - SQL Queries II 2 Aggregation q Significant extension of relational algebra q “Count the number.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 SQL: Queries, Programming, Triggers Chapter 5.
CS 405G: Introduction to Database Systems
M ATH IN SQL. 222 A GGREGATION O PERATORS Operators on sets of tuples. Significant extension of relational algebra. SUM ( [DISTINCT] A): the sum of all.
1 Today’s Class  Relational Model  SQL CS F212 Database Systems.
1 SQL: Structured Query Language (‘Sequel’) Chapter 5.
CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University1 Database Management Systems Session 5 Instructor: Vinnie Costa
SQL 2 – The Sequel R&G, Chapter 5 Lecture 10. Administrivia Homework 2 assignment now available –Due a week from Sunday Midterm exam will be evening of.
CMPT 354, Simon Fraser University, Fall 2008, Martin Ester 90 Database Systems I SQL Queries.
FALL 2004CENG 351 File Structures and Data Management1 SQL: Structured Query Language Chapter 5.
Rutgers University SQL: Queries, Constraints, Triggers 198:541 Rutgers University.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 SQL: Queries, Constraints, Triggers Chapter 5.
1 Chapter 5 SQL: QUERIES, CONSTRAINTS, TRIGGERS. 2 INTRODUCTION - The current presentation is consistent with both SQL-92 and SQL: 99 (differences will.
1 SQL: Structured Query Language Chapter 5. 2 SQL and Relational Calculus relationalcalculusAlthough relational algebra is useful in the analysis of query.
1 Rewriting Intersect Queries Using In SELECT S.sid FROM Sailors S, Boats B, Reserves R WHERE S.sid = R.sid and R.bid = B.bid and B.color = ‘red’ INTERSECT.
CSC343 – Introduction to Databases - A. Vaisman1 SQL: Queries, Programming, Triggers.
INFS614 - Lecture week 9 1 More on SQL Lecture Week 9 INFS 614, Fall 2008.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 SQL: Queries, Constraints, Triggers Chapter 5.
CSC 411/511: DBMS Design Dr. Nan WangCSC411_L6_SQL(1) 1 SQL: Queries, Constraints, Triggers Chapter 5 – Part 1.
SQL Examples CS3754 Class Note 11 CS3754 Class Note 11, John Shieh,
Unit 5/COMP3300/ SQL: Queries, Programming, Triggers Chapter 5.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 SQL: Queries, Constraints, Triggers Chapter 5.
SQL: Queries, Programming, Triggers. Example Instances We will use these instances of the Sailors and Reserves relations in our examples. If the key for.
ICS 321 Fall 2009 SQL: Queries, Constraints, Triggers Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 9/8/20091Lipyeow.
1 SQL: Queries, Constraints, Triggers Chapter 5. 2 Example Instances R1 S1 S2  We will use these instances of the Sailors and Reserves relations in our.
ICS 321 Spring 2011 The Database Language SQL (iii) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 3/14/20111Lipyeow.
Introduction to SQL ; Christoph F. Eick & R. Ramakrishnan and J. Gehrke 1 Using SQL as a Query Language COSC 6340.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 SQL: Queries, Constraints, Triggers Chapter 5.
CMPT 258 Database Systems SQL Queries (Chapter 5).
1 SQL: Queries, Constraints, Triggers Chapter 5. 2 Overview: Features of SQL  Data definition language: used to create, destroy, and modify tables and.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Management Systems Chapter 5 SQL.
1 SQL: The Query Language (Part II). 2 Expressions and Strings v Illustrates use of arithmetic expressions and string pattern matching: Find triples (of.
1 SQL: Structured Query Language (‘Sequel’) Chapter 5.
SQL: The Query Language Part 1 R &G - Chapter 5 The important thing is not to stop questioning. Albert Einstein.
1 SQL: The Query Language. 2 Example Instances R1 S1 S2 v We will use these instances of the Sailors and Reserves relations in our examples. v If the.
Database Management Systems 1 Raghu Ramakrishnan SQL: Queries, Programming, Triggers Chpt 5 Jianping Fan.
SQL and Query Execution for Aggregation. Example Instances Reserves Sailors Boats.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Basic SQL Queries.
CENG 351 File Structures and Data Management1 SQL: Structured Query Language Chapter 5.
1 CS122A: Introduction to Data Management Lecture 9 SQL II: Nested Queries, Aggregation, Grouping Instructor: Chen Li.
1 Relational Calculus ♦ Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus (DRC). ♦ Calculus has variables, constants,
SQL: Queries, Constraints, Triggers
Basic SQL Queries Go over example queries, like 10 > ALL.
COP Introduction to Database Structures
01/31/11 SQL Examples Edited by John Shieh CS3754 Classnote #10.
SQL The Query Language R & G - Chapter 5
Basic SQL Lecture 6 Fall
SQL: Queries, Constraints, Triggers
SQL: The Query Language
SQL: Queries, Programming, Triggers
Database Applications (15-415) SQL-Part II Lecture 9, February 04, 2018 Mohammad Hammoud.
CS 405G: Introduction to Database Systems
SQL: Queries, Constraints, Triggers
Relational Algebra Chapter 4 - part I.
SQL: The Query Language Part 1
SQL: Structured Query Language
SQL: Queries, Programming, Triggers
SQL: Queries, Constraints, Triggers
SQL: Queries, Programming, Triggers
Presentation transcript:

SQL: The Query Language (Part III)

GROUP BY and HAVING So far, we’ve applied aggregate operators to all (qualifying) tuples. Sometimes, we want to apply them to each of several groups of tuples. Consider: Find the age of the youngest sailor for each rating level. In general, we don’t know how many rating levels exist, and what the rating values for these levels are! Suppose we know that rating values go from 1 to 10; we can write 10 queries that look like this (!): SELECT MIN (S.age) FROM Sailors S WHERE S.rating = i For i = 1, 2, ... , 10:

Queries With GROUP BY and HAVING SELECT [DISTINCT] target-list FROM relation-list WHERE qualification GROUP BY grouping-list HAVING group-qualification The target-list contains (i) attribute names (ii) terms with aggregate operations (e.g., MIN (S.age)). The attribute list (i) must be a subset of grouping-list. Intuitively, each answer tuple corresponds to a group, and these attributes must have a single value per group. (A group is a set of tuples that have the same value for all attributes in grouping-list.)

Conceptual Evaluation The cross-product of relation-list is computed, tuples that fail qualification are discarded, `unnecessary’ fields are deleted, as before. The remaining tuples are partitioned into groups by the value of attributes in grouping-list. The group-qualification is then applied to eliminate some groups. One answer tuple is generated per qualifying group.

Find the age of the youngest sailor with age 18, for each rating with at least 2 such sailors SELECT S.rating, MIN (S.age) FROM Sailors S WHERE S.age >= 18 GROUP BY S.rating HAVING COUNT (*) > 1 Only S.rating and S.age are mentioned in the SELECT, GROUP BY or HAVING clauses; other attributes `unnecessary’. 2nd column of result is unnamed. (Use AS to name it.) Answer relation

For each red boat, find the number of reservations for this boat SELECT B.bid, COUNT (*) AS rcount FROM Sailors S, Boats B, Reserves R WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’ GROUP BY B.bid Grouping over a join of three relations. What if we drop Sailors and the condition involving S.sid?

Sorting a Result Names, ages of Sailors, sorted by name: SELECT sname, age FROM Sailors ORDER BY sname Same, ordered by age within a name: SELECT sname, age FROM Sailors ORDER BY sname, age ORDER BY clause evaluated last

Nulls Field values in a tuple are sometimes unknown (e.g., a rating has not been assigned) or nonexistent (e.g., no spouse’s name). SQL provides a special marker null for such situations. The presence of null complicates many issues. E.g.: Special operators needed to check if field is/is not null. Is rating>8 true or false when rating is null? What about AND, OR and NOT connectives? We need a 3-valued logic (true, false and unknown). Meaning of constructs must be defined carefully. (e.g., WHERE clause eliminates rows that don’t evaluate to true.) New operators (in particular, outer joins) possible/needed.

Summary Relationally complete; in fact, significantly more expressive power than relational algebra (aggregates, arithmetic, sorting, grouping, string matching….) Even queries that can be expressed in RA can often be expressed more naturally in SQL. Nulls (unknown or nonexistent) force a 3-valued logic and odd behavior: Be careful!!!