Greatest Common Factor GCF

Slides:



Advertisements
Similar presentations
Section 5.1 Prime Factorization and Greatest Common Factor.
Advertisements

Begin by writing the prime factorization of each number.
Bellwork 75÷15 21÷7 75÷25 72÷9 85÷5 132÷11 28÷7 144÷12 24÷6 180÷15.
Least Common Multiple (LCM) of
4-2 GCF Greatest Common Factor (GCF) - The largest factor that is the same for a given set of numbers Two methods: 1.) Listing Method or modified listing.
Greatest Common Factor Objective: Finding Greatest Common Factor (GCF) VocabularyThe greatest common factor is the biggest factor that is common to two.
Greatest Common Factors a.k.a. GCF
Greatest Common Factor
EXAMPLE 4 Finding the GCF of Monomials
GREATEST COMMON FACTOR
Greatest Common Factor
Do Now Circle the prime numbers :
Objectives The student will be able to:
Greatest Common Factor.
11.1 – The Greatest Common Factor (GCF)
 What prime factorization is.  For example the prime factorization of 24 = 2223  Today we will learn how to find the greatest common factor of two.
Finding the LCM (least common multiple) and GCF (greatest common factor)
EXAMPLE 1 Finding the Greatest Common Factor Find the greatest common factor of 56 and 84. SOLUTION STEP 1 Write the prime factorization of each number.
MENTAL MATH Provide the missing operations: 4 ___ 2 = 2 5____3 = 8
Lesson 10-1: Factors & Greatest Common Factor (GCF)
OBJ: to find the greatest common factor of two or more numbers.
Lesson 4-5 Prime Factorization Page 160. Vocabulary words  Composite number-has more than 2 factors.  Example: 24: 1x 24, 2 x 12, 3x8, 4x6  Prime number-
Chapter 8 Factors & The Greatest Common Factor
Greatest Common Factor Lesson 3-3. Greatest Common Factor (GCF) The greatest common factor is the largest factor that two numbers share. Let’s find the.
Prime Factorization SWBAT find the prime factorization of a composite number.
Factoring using GCF Algebra I. Definitions Prime number – is a whole number whose only factors are itself and one (a number can’t be factored any more)
Goal: Find the greatest common factor of two or more numbers.
ALGEBRA READINESS LESSON 4-2 Warm Up Lesson 4-2 Warm Up.
Factoring Polynomials
REMEMBER: What is a factor? What are the factors of 24?
Find common and binomial factors by using a table.
 The greatest common factor is the largest factor that two numbers share.  Factors- The number that are multiplied together in a multiplication problem.
Warm up 1.(12x 2 + 8x – 6) – (9x 2 – 2x + 5) 2.Find the area 3.(x – 5)(-3x 2 + 6x – 8) x + 4 2x – 1.
Greatest Common Factor and Least Common Multiples GCF and LCM.
Using the GCF to Solve Problems ANSWER The most groups that can be formed is 12. Dividing the number of each type of musician by 12, you find each group.
Defining Success Lesson 14-Finding the Greatest Common Factor Problem Solved!
§5.4 Part 1 GCF Objectives: - Factor out the GCF of an expression.
Math 71A 5.3 – Greatest Common Factors and Factoring by Grouping 1.
Finding the Greatest Common Factor. The greatest common factor of two or more numbers is the greatest number that is a factor of every number.
PRIME FACTORIZATION Pg. 12. ESSENTIAL QUESTION HOW do you use equivalent rates in the real world?
Factoring Polynomials ARC INSTRUCTIONAL VIDEO MAT 120 COLLEGE ALGEBRA.
How do you find the Greatest Common Factor(GCF) of two or more numbers? For example, how do you find the Greatest Common Factor of 32 and 60?
Finding Greatest Common Factor
Greatest Common Factor
8 Greatest Common Factor
Lesson Presentation/Cornell Notes
How to Find the Greatest Common Factor (GCF) in 5 Steps
Introduction to Factoring
Greatest Common Factor
Finding the Greatest Common Factor
8 Greatest Common Factor
Finding the Greatest Common Factor
Greatest Common Factor
PRIME FACTORS.
Greatest Common Factor
COURSE 3 LESSON 4-1 Factors
Objectives The student will be able to:
Find the greatest common factor of two or more numbers
Greatest Common Factor
Greatest Common Factor
Equivalent Expressions
Objectives The student will be able to:
Factor A factor of an integer is any integer that divides the given integer with no remainder.
Finding the Greatest Common Factor (GCF)
Greatest Common Factor
Section 4.3 Prime Factorization and Greatest Common Divisor
COURSE 3 LESSON 4-1 Factors
Greatest Common Factor
Finding the LCM and the GCF Using Prime Factorization
Finding the Greatest Common Factor (GCF)
Presentation transcript:

Greatest Common Factor GCF Intro to Algebra

List the Factors of 12 and 16

Trick to Finding the GCF Find the GCF of 16 and 12 Find the Prime Factorization of 16 and 12 Use all the factors the numbers have in common

Find the GCF of 12 and 30

Find the GCF of 9 and 12

Find the GCF of 6 and 18

Find the GCF of 24 and 108

Find the GCF of 16 and 45

GCF After finding the prime factorization of two numbers, and seeing that there are no common prime factors; the GCF is 1

GCF of 15, 30, and 105

GCF of 180, 225, and 270