Figure 3 Bilateral optic atrophy and sural nerve biopsy of patient AII-2 Bilateral optic atrophy and sural nerve biopsy of patient AII-2 (A) Red-free photographs.

Slides:



Advertisements
Similar presentations
Hereditary sensory and autonomic neuropathy type 1
Advertisements

Figure Pedigrees of the SCA42 families identified in this study
Figure 2 ERG amplitude reduction in the follow-up study
Figure 1 Summary of prior diagnostic workup in neuromuscular disorder cases Summary of prior diagnostic workup in neuromuscular disorder cases Percentage.
Figure 3 Pedigree of familial idiopathic transverse myelitis
Figure 2 Needle biopsy of the left vastus lateralis
Figure 1 Immunofluorescence pattern of patient septin-5-immunoglobulin G binding to mouse tissues Immunofluorescence pattern of patient septin-5-immunoglobulin.
Figure 3 Immunohistochemical analyses of positive and negative Epstein-Barr virus (EBV) control tissues using immunostaining Immunohistochemical analyses.
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure 1 Hierarchical clustering (HCL) outcome of all tested samples with the expression profile of the case report set as unknown Hierarchical clustering.
Figure Sural nerve electron microscopy
Figure 1 Treg percentage and suppressive function increased during each round of Treg infusions Treg percentage and suppressive function increased during.
Figure 1 Spine MRI, sagittal and axial views of patients with idiopathic transverse myelitis with VPS37A mutations Spine MRI, sagittal and axial views.
Figure Muscle biopsy of the left biceps showing the characteristic pathologic findings in BCIM Muscle biopsy of the left biceps showing the characteristic.
Figure 1 Histopathologic features of a chronic active and a chronic plaque in the MS brain Histopathologic features of a chronic active and a chronic plaque.
Figure 1 Example OCT scan
Figure 4 Detection of EBER+ cells in MS and control brains by in situ hybridization Detection of EBER+ cells in MS and control brains by in situ hybridization.
Figure 1 ERG peak time delay at baseline
Figure 1 Histopathologic features of case 1 (A–G) and case 2 (H–L)‏
Figure 3 Complete loss of neurofilament light (NEFL) protein in cultured patient neurons Complete loss of neurofilament light (NEFL) protein in cultured.
Figure Association of hippocampal subfield volumes to cognition by neopterin level, volumes, and cognition adjusted for age, education, race, sex, and.
Figure 1 Dominant and recessive missense and nonsense variants in neurofilament light (NEFL)‏ Dominant and recessive missense and nonsense variants in.
Figure 2 Histopathologic findings of patients with both inflammatory myopathy and myasthenia gravis Histopathologic findings of patients with both inflammatory.
Figure 3 Temporal trends in FALS incidence
Table 4 Associations in SNP array data between the Braak stage and previously known AD risk loci (341 variants) comparing participants with Braak stage.
Figure 5 Neurite structure is not disrupted by the lack of neurofilament light (NEFL)‏ Neurite structure is not disrupted by the lack of neurofilament.
Figure 1 Sections of muscle biopsy specimens stained with hematoxylin & eosin (HE)‏ Sections of muscle biopsy specimens stained with hematoxylin & eosin.
Figure Color fundus photographs
Figure 1 Two cases of XP-F with adult-onset neurologic deterioration
Figure 2 Linkage analysis of chromosome 19
Figure 2 Facial appearance and brain imaging
Figure Color fundus photographs
Figure Family tree with the HLA haplotyping of 6 members of the family
Figure 1 Family pedigree and MRI
Figure 2 Functionally significant genes
Table 2 Rs number, gene, OR, 95% CI, and permutation p value for the statistical significant variants resulted from allelic association analysis association.
Figure 1 Family pedigree and DNA sequencing results
Figure 4 Voltage-clamp recordings of KCNJ18 carrying the patient's SNVs expressed in Xenopus laevis oocytes under control conditions and after application.
Figure 1 [18F]florbetapir standardized uptake value ratio analytical method [18F]florbetapir standardized uptake value ratio analytical method Flowchart.
Figure 1 Histamine flare in patients and controls
Figure Clinical, radiologic, and histopathologic findings
Figure 2 Changes in fatigue under treatment
Figure 1 Considerations for concussed athletes leading to medical care or return to sport (RTS)‏ Considerations for concussed athletes leading to medical.
Figure 2 Longitudinal relationship between CSF glucose and protein changes Longitudinal relationship between CSF glucose and protein changes Delta glucose.
Figure 2 Global tau-PET distribution in familial prion disease mirrors the distribution seen in Alzheimer disease Global tau-PET distribution in familial.
Figure 1 Stacked bar chart depicts the proportion of patients with diffusion-weighted imaging (DWI)+ and DWI− scans categorized by index event type TIA.
Figure 1 Annualized percentage brain volume change
Figure 2 BVL according to on-study disability worsening
Figure 2 Repopulation of CD19+ cells in low and high BSA patients and calculation of the BSA Repopulation of CD19+ cells in low and high BSA patients and.
Figure ND5 and MCARNE phenotype
Figure 4 CHCHD2 but not TOP1MT expression rescues molecular defects
Figure 2 Brain biopsy of 2 patients with anti-MOG encephalitis initially misdiagnosed with small vessel CNS vasculitis Brain biopsy of 2 patients with.
Figure 2 C5B3 prevented AQP4-IgG–mediated CDC without affecting AQP4-IgG binding to AQP4 C5B3 prevented AQP4-IgG–mediated CDC without affecting AQP4-IgG.
Figure 3 Muscle biopsy showing myofiber atrophy and degeneration
Figure 1 bvFTD PINBPA network
Figure 2 Seizure outcomes
Yian Gu et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e521
Ingo Kleiter et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e504
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure 2 Pedigrees of families and segregation analysis of variants c
Figure 3 Freedom from clinical disease activity during 36 months of fingolimod treatment Freedom from clinical disease activity during 36 months of fingolimod.
Figure 3 C5B3 blocked MAC formation
Figure 3 Changing appearance of the frontal cortex with age associated with increasing myelination Changing appearance of the frontal cortex with age associated.
Figure 3 Within-group comparisons (before–after)‏
Figure 4 Patient 3 MRI evolution over time
Figure 1 Representative radiologic and pathologic images of patients with brain somatic mutations in SLC35A2 Representative radiologic and pathologic images.
Figure 5 C5B3 inhibited inflammatory infiltration in an NMOSD mouse model in vivo C5B3 inhibited inflammatory infiltration in an NMOSD mouse model in vivo.
Figure 2 Nonhuman primate brain immunohistochemistry
Figure 4 Venn diagram for B-cell Sup proteins compared with proteins from exosome-enriched fractions from a human B-cell line Venn diagram for B-cell Sup.
Figure (A and B) Effect of canakinumab in muscle strength measured in each patient as mean bilateral GF (A) and TMS (B) during the mean study period of.
Presentation transcript:

Figure 3 Bilateral optic atrophy and sural nerve biopsy of patient AII-2 Bilateral optic atrophy and sural nerve biopsy of patient AII-2 (A) Red-free photographs of the optic discs of patient AII-2 show mild temporal pallor of both optic discs. (B) Optical coherence tomography measurements of the retinal nerve fiber layer thickness around both optic discs of patient AII-2 confirm significant thinning in the temporal quadrants consistent with an optic neuropathy. (D) Semi-thin resin section of the sural nerve, stained with methylene blue azure-basic fuchsin, shows a fascicle with severe loss of large (red arrowhead) and small myelinated fibers with no apparent active axonal degeneration and minimal regeneration (scale bar = 25 μm). (E) Electron microscopy shows frequent denervated Schwann cell profiles and bands of Büngner (blue arrowheads) in keeping with widespread fiber loss. The mitochondria (yellow arrowheads) show no apparent pathology (scale bar = 1 μm). Alejandro Horga et al. Neurol Genet 2019;5:e322 Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.