Cloud trends from GOME, SCIAMACHY and OMI

Slides:



Advertisements
Similar presentations
KNMI Ozone Satellite Observations
Advertisements

Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
Application of Cloudnet data in the validation of SCIAMACHY cloud height products Ping Wang Piet Stammes KNMI, De Bilt, The Netherlands CESAR Science day,
A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Gerrit de Leeuw 1,2,3, Larisa Sogacheva1, Pekka Kolmonen 1, Anu-Maija Sundström 2, Edith Rodriguez 1 1 FMI, Climate Change Unit, Helsinki, Finland 2 Univ.
Page 1 OMI Science Team Meeting, Helsinki, Finland, 24 – 27 June 2008M. Van Roozendael et al. On the usability of space nadir UV-visible observations for.
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Gloudemans 1, J. de Laat 1,2, C. Dijkstra 1, H. Schrijver 1, I. Aben 1, G. vd Werf 3, M. Krol 1,4 Interannual variability of CO and its relation to long-range.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Cloud algorithms and applications for TEMPO Joanna Joiner, Alexander Vasilkov, Nick Krotkov, Sergey Marchenko, Eun-Su Yang, Sunny Choi (NASA GSFC)
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Diagnosing Climate Change from Satellite Sounding Measurements – From Filter Radiometers to Spectrometers William L. Smith Sr 1,2., Elisabeth Weisz 1,
MT Workshop October 2005 JUNE 2004 DECEMBER 2004 End of OCTOBER 2005 ? MAY 2002 ? Capabilities of multi-angle polarization cloud measurements from.
EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA.
Page 1 Validation by Model Assimilation and/or Satellite Intercomparison - ESRIN 9–13 December 2002 Monitoring of near-real-time SCIAMACHY, MIPAS, and.
1 Aerosol information from the UV-visible spectrometer GOME-2 Piet Stammes, KNMI, De Bilt, The Netherlands 7 November 2012.
 Expectations 2004  Achievements  Summary + Outlook AT-2 Task Group 1 Progress Thomas Wagner.
ARCTAS BrO Measurements from the OMI and GOME-2 Satellite Instruments
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Surface Reflectivity from OMI: Effects of Snow on OMI NO 2 Gray O’Byrne 1, Randall Martin 1,2, Aaron van Donkelaar 1, Joanna Joiner 3, Edward A. Celarier.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Measurements.
Clouds in the Southern midlatitude oceans Catherine Naud and Yonghua Chen (Columbia Univ) Anthony Del Genio (NASA-GISS)
SCIAMACHY long-term validation M. Weber, S. Mieruch, A. Rozanov, C. von Savigny, W. Chehade, R. Bauer, and H. Bovensmann Institut für Umweltphysik, Universität.
AMFIC final meeting LAP/Auth validation activities Dimitris Balis & MariLiza Koukouli Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
Aristeidis K. Georgoulias Konstantinos Kourtidis Konstantinos Konstantinidis AMFIC Web Data Base AMFIC Annual Meeting - Beijing October 2008 Democritus.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
Andrew Heidinger and Michael Pavolonis
Satellite group MPI Mainz Investigating Global Long-term Data Sets of the Atmospheric H 2 O VCD and of Cloud Properties.
Combining Simultaneously Measured UV and IR Radiances from OMI and TES to Improve Tropospheric Ozone Profile Retrievals Dejian Fu 1, John Worden 1, Susan.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
Investigations of Artifacts in the ISCCP Datasets William B. Rossow July 2006.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
S5P cloud products Sebastián Gimeno García, Ronny Lutz, Diego Loyola German S5P Verification Meeting 1 Bremen, November Chart 1>
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
Comparisons of LER/MLER Cloud Pressures with a Model of Mie Scattering Plane-Parallel Cloud Alexander Vasilkov 1, Joanna Joiner 2, Pawan K. Bhartia 2,
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
SEMIANALYTICAL CLOUD RETRIEVAL ALGORITHM AND ITS APPLICATION TO DATA FROM MULTIPLE OPTICAL INSTRUMENTS ON SPACEBORNE PLATFORMS: SCIAMACHY, MERIS, MODIS,
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Henk Eskes, ERS-ENVISAT symposium 2004 Retrieval, validation and assimilation of SCIAMACHY ozone columns Henk Eskes, Ronald van der A, Ellen Brinksma,
MAXDOAS observations in Beijing G. Pinardi, K. Clémer, C. Hermans, C. Fayt, M. Van Roozendael BIRA-IASB Pucai Wang & Jianhui Bai IAP/CAS 24 June 2009,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw.
Barbuda Antigua MISR 250 m The Climatology of Small Tropical Oceanic Cumuli New Findings to Old Problems (Analysis of EOS-Terra data) Larry Di Girolamo,
Interannual Variability and Decadal Change of Solar Reflectance Spectra Zhonghai Jin Costy Loukachine Bruce Wielicki (NASA Langley research Center / SSAI,
ESA :DRAGON/ EU :AMFIC Air quality Monitoring and Forecasting In China Ronald van der A, KNMI Bas Mijling, KNMI Hennie Kelder KNMI, TUE DRAGON /AMFIC project.
Page 1 OMI ST Meeting #11, KNMI, De Bilt, The Netherlands, June 2006 Validation of OMI trace gas products Main contributors (this work): Michel Van.
Rob Roebeling, Hartwig Deneke and Arnout Feijt GEWEX Cloud Assessment Meeting Madison, United States of America 6 -7 July 2006 "METEOSAT-8 (SEVIRI) CLOUD.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
Cloud workshop wrap-up OMI science team meeting, 21 June 2006.
1 SO 2 Air Mass Factors for pollution and volcanic emissions OMI Science Team Meeting De Bilt, June 2006 Pieter Valks, Werner Thomas, Thilo Ebertseder,
The Lodore Falls Hotel, Borrowdale
DOAS workshop 2015, Brussels, July 2015
Yinghui Liu1, Jeff Key2, and Xuanji Wang1
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Concurrent measurements of tropospheric NO2 from OMI and SCIAMACHY
Huiqun Wang1 Gonzalo Gonzalez Abad1, Xiong Liu1, Kelly Chance1
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Hyperspectral radiation: measurements and modelling
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Constraining the magnitude and diurnal variation of NOx sources from space Folkert Boersma.
Studying the cloud radiative effect using a new, 35yr spanning dataset of cloud properties and radiative fluxes inferred from global satellite observations.
What controls the variability of net incoming solar radiation?
Presentation transcript:

Cloud trends from GOME, SCIAMACHY and OMI OMI science meeting, Helsinki, 24-27 June 2008 Cloud trends from GOME, SCIAMACHY and OMI Ping Wang, Mark Kroon, Piet Stammes, Ronald van der A KNMI, De Bilt, the Netherlands

Overview Importance of clouds Satellite instruments Method Global frequency distributions of cloud properties Trends in global cloud properties Conclusions

Importance of clouds for climate 1. Clouds dominate the radiative budget of the atmosphere: Clouds contribute about 75 % to Earth’s albedo. Height of clouds determines their temperature. 2. Clouds play a central role in the hydrological cycle. 3. Current understanding of clouds is limited: Global climate models have to be validated with global observations of clouds.

Satellite spectrometers INSTRUMENT /SATELLITE SPECTRAL RANGE PIXEL SIZE GOME / ERS-2: 240 – 800 nm 320x40 km2 SCIAMACHY / Envisat: 240 – 2380 nm 60x30 km2 GOME-2 / Metop-A: 240 – 800 nm 80x40 km2 OMI/AURA: 270 – 500 nm 24x13 km2 Spectral resolution: 0.2 - 0.4 nm SCIA GOME/GOME-2 OMI Raman O2-O2 O2 A

O2 A-band simulation O2 A-band measurement Spectral resolution: 1 pm Spectral resolution: 0.4 nm

Cloud retrieval algorithm FRESCO Reality Retrieval model Ac = 0.8 pc ceff 1-ceff Geometrical cloud fraction Cloud optical thickness Cloud top pressure Cloud bottom pressure Cloud phase ……… ps, As FRESCO algorithm produces: Effective cloud fraction: ceff Cloud pressure pc

Simulation of O2 cloud pressure Sneep et al. JGR 2008

O2 A-band cloud results compared to ISCCP data Data selection: GOME (FRESCO): 1996-2003 SCIAMACHY (FRESCO): 2003-2005 ISCCP D2 data: 1996-2005 Area: 60° N – 60° S Time: 10:OO hr local time Monthly averages

Comparison between GOME and ISCCP land ocean 1997 ISCCP 09:00

Time series of global mean cloud pressure

Time series of NH and SH cloud pressure GOME

OMI global mean cloud pressure

OMI global mean effective cloud fraction

Global mean cloud pressure 1996-2008

Global mean effective cloud fraction 1996-2008

O2-O2 cloud fraction across track The larger ceff at the edges of the swath might contribute to the larger global mean ceff July 2007

O2-O2 ceff, Pc vs. lat. July 2007

Conclusions O2 absorption provides unique height information about clouds, since visible light penetrates into clouds. O2 methods are complementary to IR methods which give mostly the top of the cloud. O2 cloud pressure has a clear bimodal distribution unlike ISCCP. The global average O2 A-band cloud pressure has a clear seasonal dependence, which is missing in ISCCP. . OMI O2-O2 global averaged cloud pressure and effective cloud fraction show less seasonal variation than GOME and SCIA FRESCO cloud products.

Trend in global cloud pressure from GOME and SCIAMACHY

Use of O2 absorption band: direct measure of cloud pressure

Cloud pressure distributions from GOME land ocean Global mean, 1997

O2-O2 FRESCO comparison Maarten et al. 2008 FRESCO+ cloud fraction and pressure monthly average, perhaps not all the data Differences in the FRESCO and OMI cloud average. Cloud effect on climate ISCCP data new version? How to explain the seasonal variation Check the SZA dependence? Make FRESCO cloud trend plot using excel ?