Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring

Slides:



Advertisements
Similar presentations
Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
Advertisements

Ion Collider Ring Design V.S. Morozov for MEIC study group MEIC Collaboration Meeting, JLab October 5-7, 2015.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
CASA Collider Design Review Retreat HERA The Only Lepton-Hadron Collider Ever Been Built Worldwide Yuhong Zhang February 24, 2010.
Nonlinear Dynamic Study of FCC-ee Pavel Piminov, Budker Institute of Nuclear Physics, Novosibirsk, Russia.
MEIC Electron Collider Ring Design Fanglei Lin MEIC Collaboration Meeting, October 5, 2015.
HYBRID WARM-COLD SYNCHROTRON FOR THE MUON COLLIDER Al Garren July 28, 2011.
Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
HF2014 Workshop, Beijing, China 9-12 October 2014 Challenges and Status of the FCC-ee lattice design Bastian Haerer Challenges.
Layout and Arcs lattice design A. Chancé, B. Dalena, J. Payet, CEA R. Alemany, B. Holzer, D. Schulte CERN.
JLEIC Electron Collider Ring Design and Polarization
Ion Collider Ring: Design and Polarization
Large Booster and Collider Ring
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
Issues in CEPC pretzel and partial double ring scheme design
First Look at Nonlinear Dynamics in the Electron Collider Ring
Optimization of CEPC Dynamic Aperture
Electron collider ring Chromaticity Compensation and dynamic aperture
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
DA study for CEPC Main Ring
DA Study for the CEPC Partial Double Ring Scheme
ILC 3.2 km DR design based on FODO lattice (DMC3)
Collider Ring Optics & Related Issues
CEPC APDR and PDR scheme
ILC 3.2 km DR design based on FODO lattice (DMC3)
Update of Lattice Design for CEPC Main Ring
Update of Lattice Design for CEPC Main Ring
Update of lattice design for CEPC main ring
CEPC APDR and PDR scheme
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
RHIC Magnets for JLEIC Yuhong Zhang May 11, 2018.
Multipole Limit Survey of FFQ and Large-beta Dipole
Vertical Dogleg Options for the Ion Collider Ring
JLEIC Collider Rings’ Geometry Options
Progress on Non-linear Beam Dynamic Study
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Update on MEIC Nonlinear Dynamics Work
Feasibility of Recuperation of Magnets in Decommissioned Storage Rings
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
The Feasibility of Using RHIC Magnets for MEIC and Cost Impact
The MEIC electron ring as the large ion booster
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Alternative Ion Injector Design
First Look at Error Sensitivity in MEIC
Fanglei Lin, Yuri Nosochkov Vasiliy Morozov, Yuhong Zhang, Guohui Wei
Update on JLEIC Electron Ring Design
Multipole Limit Survey of FFQ and Large-beta Dipole
Conventional Synchronization Schemes
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
JLEIC Collider Rings’ Geometry Options (II)
Progress Update on the Electron Polarization Study in the JLEIC
MEIC New Baseline: Performance and Accelerator R&D
MEIC Alternative Design Part V
Possibility of MEIC Arc Cell Using PEP-II Dipole
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Arc FODO Cell Inventory
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
MEIC Alternative Design Part III
New Chicane Option Total bending angle and start and end points fixed
MEIC beam path change with e-ring bypass lines
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
A TME-like Lattice for DA Studies
Update on DA Studies for a TME-like Lattice
Option 1: Reduced FF Quad Apertures
Large Ion Booster Re-design Update
3.2 km FODO lattice for 10 Hz operation (DMC4)
JLEIC electron ring with damping wigglers
Presentation transcript:

Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring Fanglei Lin, Andrew Hutton, Leigh Harwood, Vasiliy Morozov, Fulvia, Pilat, Yuhong Zhang F. Lin

FODO Arc Cell Aperture radius 45 mm Dipoles Quadrupoles   Magnetic/physical length 5.4/5.68 m Bending angle 40.9 mrad (2.34), bending radius 132 m 0.31 T @ 12 GeV, 0.13 T @ 5 GeV Sagitta 2.8 cm Quadrupoles Magnetic/physical length 0.7185/0.7785 m -11 and 14 T/m field gradients @ 12 GeV for 135/90 x/y betatron phase advance 0.63 T @ 45 mm radius Sextupoles Magnetic/physical length 0.25/0.31 m -172 and 94 T/m2 field gradients @ 12 GeV 0.17 and 0.09 T @ 45 mm radius BPMs and Correctors Each one physical length 0.15 m Complete FODO Length 15.2 m Arc bending radius 186 m optimal curvature  

TME-like Arc Cell Aperture radius 45 mm Dipoles Quadrupoles Sextupoles Magnetic/physical length 5.4/5.68 m Bending angle 55.9 mrad (3.2), bending radius 96.5 m 0.42 T @ 12 GeV, 0.17 T @ 5 GeV Sagitta 3.8 cm Quadrupoles Magnetic/physical length 0.9/0.96 and 0.7185/0.7785 m 19.2, -18.7 and 17.8 T/m field gradients @ 12 GeV for 270 and 90 x/y betatron phase advance 0.87, -0.84 and 0.80 T @ 45 mm radius Sextupoles Magnetic/physical length 0.25/0.31 m -381 and 361 T/m2 field gradients @ 12 GeV/c 0.39 and 0.37 T @ 45 mm radius BPMs and Correctors Each one physical length 0.15 m Complete FODO Length 20.444 m Arc bending radius 183 m

PEP-II HER vs. MEIC Arc Cell Parameters Unit PEP-II HER FODO cell MEIC FODO cell (135/90 pha. adv. ) MEIC FODO cell (90 pha. adv. ) MEIC TME-like cell (1.5/0.5 pha. adv.) Energy GeV 9 12 Dipole physical length m 5.68 Bending angle deg 1.875 2.34 3.205 Bending radius 165.0 132 96.5 Magnetic field T 0.1819 0.3030 0.4147 Sagitta R cm 2.2 2.8 3.8 Quad physical length 0.7185* 0.7785/0.7785 0.96/0.7785/0.7785 Field gradient T/m 5.48* 14/11 10.7/10.6 19/19/18 Cell length 15.2 20.444 Number of cells 96 104 76 Number of dipoles 192 208 152 Number of quads 192 (?) 104/104 76/152/152 Norm. emittance um 845 513 (+ 547*) 1175 (+ 547) 94 (+ 547) SR power density total power kW/m 10 MW 10.4 * 0.7185 m is the magnetic length shown in the conceptual design report. It has 70 quadrupole magnets of this type. * 547 um is the contribution of emittance from the spin rotators and interaction regions at 12 GeV. This can be further optimized.

PEP-II HER vs. MEIC Arc Cell Parameters Unit PEP-II HER FODO cell MEIC FODO cell (135/90 pha. adv. ) MEIC FODO cell (90 pha. adv. ) MEIC TME-like cell (1.5/0.5 pha. adv.) Energy GeV 9 12 Dipole physical length m 5.68 Bending angle deg 1.875 2.34 3.205 Sagitta R cm 2.2 2.8 3.8 Quad physical length 0.7185* 0.7785/0.7785 0.96/0.7785/0.7785 Field gradient T/m 5.48* 14/11 10.7/10.6 19/19/18 Cell length 15.2 20.444 Norm. emittance um 845 555 (+ 547*) 1175 (+ 547) 94 (+ 547) Hor. Max. beam size with *=(10,2)cm mm 4.3 5.4 3.3 Hor. Max. beam size with *=(40,8)cm 2.7 1.6 Such large beam demands large dynamic aperture. This is the beam size at 12 GeV. Beam size will be double at 20 GeV ! Luminosity reduces by a factor of 4

Thank You for Your Attention !

MEIC e-ring Geometry e- Whole ring 2510.6 m Each arc 879.9 m Each straight 375.3 m Each arc 879.9 m Whole ring 2510.6 m