Far infrared rotational spectrum of CO J= B

Slides:



Advertisements
Similar presentations
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Advertisements

INDEX OF HYDROGEN DEFICIENCY THE BASIC THEORY OF THE BASIC THEORY OF INFRARED SPECTROSCOPY and.
Lecture 6 Vibrational Spectroscopy
LINEAR MOLECULE ROTATIONAL TRANSITIONS:  J = 4  J = 3  J = 2  J = 1  J = 0.
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
1 Molecular Hamiltonians and Molecular Spectroscopy.
PY3P05 Lecture 14: Molecular structure oRotational transitions oVibrational transitions oElectronic transitions.
Absorption and Emission Spectrum
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Introduction to Infrared Spectrometry Chap 16. Infrared Spectral Regions Table 16-1 Most used – 15.
Rotational and Vibrational Spectra
Classical Model of Rigid Rotor
Electron Spin as a Probe for Structure Spin angular momentum interacts with external magnetic fields g e  e HS e and nuclear spins I m Hyperfine Interaction.
Vibrational Transitions
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
X-Ray Diffraction Spectroscopy RAMAN Microwave. What is X-Ray Diffraction?
Microwave Spectroscopy Rotational Spectroscopy
Vibrational Spectroscopy
Spectroscopic Analysis Part 4 – Molecular Energy Levels and IR Spectroscopy Chulalongkorn University, Bangkok, Thailand January 2012 Dr Ron Beckett Water.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
INFRA RED ABSORPTION SPECTROSCOPY Kateřina Hynštová.
Revisit vibrational Spectroscopy
Powerpoint Templates Page 1 Electric dipole Transition moment.
Substitution Structure. Scattering Theory P = α E.
ROTATIONAL SPECTROSCOPY
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
H = ½ ω (p 2 + q 2 ) The Harmonic Oscillator QM.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
C We have to solve the time independent problem H o  o = E o  o Harry Kroto 2004.
Bill Madden  = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) Square of the transition moment  n  e  m  2 2.Frequency.
Tutorial – 4 1) Calculate the moment of inertia (I) and bond length (r) from microwave spectrum of CO. First line (J = 0 to J=1 transition) in the rotation.
ROTATIONAL ENERGIES AND SPECTRA: . LINEAR MOLECULE SPECTRA:  Employing the last equation twice  ΔE= E J+1 – E J = hB(J+1)(J=2) – hBJ(J+1)  Or: ΔE.
365 x 24 x 60 x 60 Harry Kroto x 24 x 60 x 60 = 0.36 x 2.4 x 0.36 x 10 2 x 10 x 10 4 Harry Kroto 2004.
IR Spectroscopy Wave length ~ 100 mm to 1 mm
Microwave Spectroscopy Wave length ~ 1 cm to 100  m Wave number ~ 1 to 100 cm -1. Frequency ~ 3 x to 3 x Hz Energy ~ 10 to 1000 Joules/mole.
AClassical Description >E = T + V Harry Kroto 2004.
Time independent H o  o = E o  o Time dependent [H o + V(t)]  = iħ  /  t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)]  = iħ  / 
Schrödinger Equation – Model Systems: We have carefully considered the development of the Schrödinger equation for important model systems – the one, two.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
The Electromagnetic Spectrum. Radio wave Less than 1 GHz.
RAMAN SPECTROSCOPY THREE EFFECTS OF RADIATION OF LIGHT ON MOLECULES CAN OCCUR. (i) RADIATION OF LIGHT ON TO MOLECULES, SOME OF THE LIGHT WILL BE REFLECTED.
Chemistry 213 Practical Spectroscopy
Molecular Spectroscopy
Fermi’s Golden Rule Io I l Harry Kroto 2004.
UNIT IV Molecules.
International Symposium on Molecular Spectroscopy
Only three lines observed R(0) R(1) P(1)
Introduction and Principle of IR Spectrophotometry
“Forbidden Transitions”
Rotational and Vibrational Spectra
Einstein Coefficients
Quantal rotation Molecules
U line procedure DeltaF(J) = 2B(J+1) separations =2B (MHz)
Rigid Diatomic molecule
This is the far infra red spectrum of the diatomic molecule CO
I = μr2 μ = m1m2/(m1+m2) I (uÅ2) = / B(cm-1)
Molecules Harry Kroto 2004.
CO Laboratory rotational infrared spectrum
The selection rules for vibration rotation transitions are
LI: Understand how IR Spectroscopy works
Molecular Spectra By – P.V.Koshti.
How do you calculate the moment of inertia of a polyatomic molecule
IR-Spectroscopy Atoms in a molecule are constantly in motion
at: ircamera.as.arizona.edu/.../magneticearth.htm
How do I get experimental information on bond lengths in simple
Recall that for purely rotational transitions to occur, a molecule
Harry Kroto 2004.
Quantal rotation Molecules
Vibrational Energy Levels
The Rigid Rotor.
Presentation transcript:

Far infrared rotational spectrum of CO J= 12 15 20B 10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Harry Kroto 2004

5 10 J= 12 15 20B Harry Kroto 2004

20B 23.0 cm-1 61.5 cm-1 Line separations 2B Harry Kroto 2004

20B 23.0 cm-1 61.5 cm-1 Line separations 2B 61.5 – 23 = 38.5 cm-1 = 20B Harry Kroto 2004

20B 23.0 cm-1 61.5 cm-1 Line separations 2B 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 Harry Kroto 2004

Determine the bond length of the CO 5 10 15 Homework Determine the bond length of the CO in A (Angstroms) and nm B (cm-1) = 16.863/ I (UA2) I =  r2  = m1m2/(m1+m2) Assume U of C =12 and O = 16 Note 1A = 0.1nm Harry Kroto 2004

Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( J= 12 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

Radiotelescope in Canada Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

B(J+1)(J+2) – D(J+1)2(J+2)2 J+1 BJ(J+1) – DJ2(J+1)2 J F(J) = 2B(J+1) – 4D(J+1)3 Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

Radiotelescope in Canada Harry Kroto 2004

Black clouds and stars in space -Taurus Harry Kroto 2004

Harry Kroto 2004