Introduction to Econometrics, 5th edition

Slides:



Advertisements
Similar presentations
CHOW TEST AND DUMMY VARIABLE GROUP TEST
Advertisements

EC220 - Introduction to econometrics (chapter 5)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: slope dummy variables Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: interactive explanatory variables Original citation: Dougherty, C. (2012)
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
EC220 - Introduction to econometrics (chapter 7)
1 BINARY CHOICE MODELS: PROBIT ANALYSIS In the case of probit analysis, the sigmoid function F(Z) giving the probability is the cumulative standardized.
1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you.
EC220 - Introduction to econometrics (chapter 2)
00  sd  0 –sd  0 –1.96sd  0 +sd 2.5% CONFIDENCE INTERVALS probability density function of X null hypothesis H 0 :  =  0 In the sequence.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: variable misspecification iii: consequences for diagnostics Original.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: testing a hypothesis relating to a regression coefficient (2010/2011.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (chapter 1)
1 INTERPRETATION OF A REGRESSION EQUATION The scatter diagram shows hourly earnings in 2002 plotted against years of schooling, defined as highest grade.
TESTING A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT This sequence describes the testing of a hypotheses relating to regression coefficients. It is.
SLOPE DUMMY VARIABLES 1 The scatter diagram shows the data for the 74 schools in Shanghai and the cost functions derived from a regression of COST on N.
BINARY CHOICE MODELS: LOGIT ANALYSIS
1 In the previous sequence, we were performing what are described as two-sided t tests. These are appropriate when we have no information about the alternative.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: precision of the multiple regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: semilogarithmic models Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: nonlinear regression Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: Chow test Original citation: Dougherty, C. (2012) EC220 - Introduction.
TOBIT ANALYSIS Sometimes the dependent variable in a regression model is subject to a lower limit or an upper limit, or both. Suppose that in the absence.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy variable classification with two categories Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: two sets of dummy variables Original citation: Dougherty, C. (2012) EC220.
1 PREDICTION In the previous sequence, we saw how to predict the price of a good or asset given the composition of its characteristics. In this sequence,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: the effects of changing the reference category Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy classification with more than two categories Original citation:
DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES This sequence explains how to extend the dummy variable technique to handle a qualitative explanatory.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: Tobit models Original citation: Dougherty, C. (2012) EC220 - Introduction.
THE DUMMY VARIABLE TRAP 1 Suppose that you have a regression model with Y depending on a set of ordinary variables X 2,..., X k and a qualitative variable.
1 INTERACTIVE EXPLANATORY VARIABLES The model shown above is linear in parameters and it may be fitted using straightforward OLS, provided that the regression.
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
1 TWO SETS OF DUMMY VARIABLES The explanatory variables in a regression model may include multiple sets of dummy variables. This sequence provides an example.
Confidence intervals were treated at length in the Review chapter and their application to regression analysis presents no problems. We will not repeat.
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
1 PROXY VARIABLES Suppose that a variable Y is hypothesized to depend on a set of explanatory variables X 2,..., X k as shown above, and suppose that for.
F TEST OF GOODNESS OF FIT FOR THE WHOLE EQUATION 1 This sequence describes two F tests of goodness of fit in a multiple regression model. The first relates.
MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE 1 This sequence provides a geometrical interpretation of a multiple regression model with two.
Simple regression model: Y =  1 +  2 X + u 1 We have seen that the regression coefficients b 1 and b 2 are random variables. They provide point estimates.
. reg LGEARN S WEIGHT85 Source | SS df MS Number of obs = F( 2, 537) = Model |
Chapter 5: Dummy Variables. DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES 1 We’ll now examine how you can include qualitative explanatory variables.
POSSIBLE DIRECT MEASURES FOR ALLEVIATING MULTICOLLINEARITY 1 What can you do about multicollinearity if you encounter it? We will discuss some possible.
(1)Combine the correlated variables. 1 In this sequence, we look at four possible indirect methods for alleviating a problem of multicollinearity. POSSIBLE.
COST 11 DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES 1 This sequence explains how you can include qualitative explanatory variables in your regression.
RAMSEY’S RESET TEST OF FUNCTIONAL MISSPECIFICATION 1 Ramsey’s RESET test of functional misspecification is intended to provide a simple indicator of evidence.
1 NONLINEAR REGRESSION Suppose you believe that a variable Y depends on a variable X according to the relationship shown and you wish to obtain estimates.
1 HETEROSCEDASTICITY: WEIGHTED AND LOGARITHMIC REGRESSIONS This sequence presents two methods for dealing with the problem of heteroscedasticity. We will.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
1 CHANGES IN THE UNITS OF MEASUREMENT Suppose that the units of measurement of Y or X are changed. How will this affect the regression results? Intuitively,
SEMILOGARITHMIC MODELS 1 This sequence introduces the semilogarithmic model and shows how it may be applied to an earnings function. The dependent variable.
GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL The output above shows the result of regressing EARNINGS, hourly earnings in dollars, on S, years.
1 REPARAMETERIZATION OF A MODEL AND t TEST OF A LINEAR RESTRICTION Linear restrictions can also be tested using a t test. This involves the reparameterization.
F TESTS RELATING TO GROUPS OF EXPLANATORY VARIABLES 1 We now come to more general F tests of goodness of fit. This is a test of the joint explanatory power.
WHITE TEST FOR HETEROSCEDASTICITY 1 The White test for heteroscedasticity looks for evidence of an association between the variance of the disturbance.
1 COMPARING LINEAR AND LOGARITHMIC SPECIFICATIONS When alternative specifications of a regression model have the same dependent variable, R 2 can be used.
VARIABLE MISSPECIFICATION II: INCLUSION OF AN IRRELEVANT VARIABLE In this sequence we will investigate the consequences of including an irrelevant variable.
VARIABLE MISSPECIFICATION I: OMISSION OF A RELEVANT VARIABLE In this sequence and the next we will investigate the consequences of misspecifying the regression.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

Introduction to Econometrics, 5th edition Type author name/s here Dougherty Introduction to Econometrics, 5th edition Chapter heading Chapter 5: Dummy Variables © Christopher Dougherty, 2016. All rights reserved.

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST N In the previous sequence we chose general academic schools as the reference (omitted) category and defined dummy variables for the other categories. 1

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST N This enabled us to compare the overhead costs of the other schools with those of general schools and to test whether the differences were significant. 2

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST N However, suppose that we were interested in testing whether the overhead costs of skilled workers’ schools were different from those of the other types of school. How could we do this? 3

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST N It is possible to perform a t test using the variance-covariance matrix of the regression coefficients to calculate the relevant standard errors. But it is a pain and it is easy to make arithmetical errors. 4

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST N It is much simpler to re-run the regression making skilled workers’ schools the reference category. Now we need to define a dummy variable GEN for the general schools. 5

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST = b1 + dTTECH + dVVOC + dGGEN + b2N + u The model is shown in equation form. Note that there is no longer a dummy variable for skilled workers’ schools since they form the reference category. 6

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST = b1 + dTTECH + dVVOC + dGGEN + b2N + u Skilled workers' school (TECH = VOC = GEN = 0) COST = b1 + b2N + u In the case of observations relating to skilled workers’ schools, all the dummy variables are 0 and the model simplifies to the intercept and the term involving N. 7

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST = b1 + dTTECH + dVVOC + dGGEN + b2N + u Skilled workers' school (TECH = VOC = GEN = 0) COST = b1 + b2N + u Technical school (TECH = 1; VOC = GEN = 0) COST = (b1 + dT) + b2N + u In the case of observations relating to technical schools, TECH is equal to 1 and the intercept increases by an amount dT. 8

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST = b1 + dTTECH + dVVOC + dGGEN + b2N + u Skilled workers' school (TECH = VOC = GEN = 0) COST = b1 + b2N + u Technical school (TECH = 1; VOC = GEN = 0) COST = (b1 + dT) + b2N + u Note that dT should now be interpreted as the extra overhead cost of a technical school relative to that of a skilled workers’ school. 9

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST = b1 + dTTECH + dVVOC + dGGEN + b2N + u Skilled workers' school (TECH = VOC = GEN = 0) COST = b1 + b2N + u Technical school (TECH = 1; VOC = GEN = 0) COST = (b1 + dT) + b2N + u Vocational school (VOC = 1; TECH = GEN = 0) COST = (b1 + dV) + b2N + u General school (GEN = 1; TECH = VOC = 0) COST = (b1 + dG) + b2N + u Similarly one can derive the implicit cost functions for vocational and general schools, their d coefficients also being interpreted as their extra overhead costs relative to those of skilled workers’ schools. 10

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST Technical dT b1+dT dG dV b1 Workers’ Vocational b1+dV b1+dG General N This diagram illustrates the model graphically. Note that the d shifts are measured from the line for skilled workers’ schools. 11

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY School Type COST N TECH VOC GEN 1 Technical 345,000 623 1 0 0 2 Technical 537,000 653 1 0 0 3 General 170,000 400 0 0 1 4 Workers’ 526.000 663 0 0 0 5 General 100,000 563 0 0 1 6 Vocational 28,000 236 0 1 0 7 Vocational 160,000 307 0 1 0 8 Technical 45,000 173 1 0 0 9 Technical 120,000 146 1 0 0 10 Workers’ 61,000 99 0 0 0 Here are the data for the first 10 of the 74 schools with skilled workers’ schools as the reference category. 12

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH VOC GEN Source | SS df MS Number of obs = 74 ---------+------------------------------ F( 4, 69) = 29.63 Model | 9.2996e+11 4 2.3249e+11 Prob > F = 0.0000 Residual | 5.4138e+11 69 7.8461e+09 R-squared = 0.6320 ---------+------------------------------ Adj R-squared = 0.6107 Total | 1.4713e+12 73 2.0155e+10 Root MSE = 88578 ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 Here is the Stata output for the regression. We will focus first on the regression coefficients. 13

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST = 88,000 + 11,000TECH – 90,000VOC – 143,000GEN + 343N ^ The regression result is shown written as an equation. 14

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST = 88,000 + 11,000TECH – 90,000VOC – 143,000GEN + 343N ^ ^ Skilled workers' school (TECH = VOC = GEN = 0) COST = 88,000 + 343N Putting all the dummy variables equal to 0, we obtain the equation for the reference category, the skilled workers’ schools. 15

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST = 88,000 + 11,000TECH – 90,000VOC – 143,000GEN + 343N ^ ^ Skilled workers' school (TECH = VOC = GEN = 0) COST = 88,000 + 343N ^ Technical school (TECH = 1; VOC = GEN = 0) COST = 88,000 + 11,000 + 343N = 99,000 + 343N Putting TECH equal to 1 and VOC and GEN equal to 0, we obtain the equation for the technical schools. 16

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST = 88,000 + 11,000TECH – 90,000VOC – 143,000GEN + 343N ^ ^ Skilled workers' school (TECH = VOC = GEN = 0) COST = 88,000 + 343N ^ Technical school (TECH = 1; VOC = GEN = 0) COST = 88,000 + 11,000 + 343N = 99,000 + 343N ^ Vocational school (VOC = 1; TECH = GEN = 0) COST = 88,000 – 90,000 + 343N = –2,000 + 343N ^ General school (VOC = 1; TECH = WORKER = 0) COST = 88,000 – 143,000 + 343N = –55,000 + 343N And similarly we obtain the equations for the vocational and general schools, putting VOC and GEN equal to 1 in turn. 17

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST = 88,000 + 11,000TECH – 90,000VOC – 143,000GEN + 343N ^ ^ Skilled workers' school (TECH = VOC = GEN = 0) COST = 88,000 + 343N ^ Technical school (TECH = 1; VOC = GEN = 0) COST = 88,000 + 11,000 + 343N = 99,000 + 343N ^ Vocational school (VOC = 1; TECH = GEN = 0) COST = 88,000 – 90,000 + 343N = –2,000 + 343N ^ General school (VOC = 1; TECH = WORKER = 0) COST = 88,000 – 143,000 + 343N = –55,000 + 343N Note that the cost functions turn out to be exactly the same as when we used general schools as the reference category. 18

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY COST N Consequently the scatter diagram with regression lines is exactly the same as before. 19

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH VOC GEN Source | SS df MS Number of obs = 74 ---------+------------------------------ F( 4, 69) = 29.63 Model | 9.2996e+11 4 2.3249e+11 Prob > F = 0.0000 Residual | 5.4138e+11 69 7.8461e+09 R-squared = 0.6320 ---------+------------------------------ Adj R-squared = 0.6107 Total | 1.4713e+12 73 2.0155e+10 Root MSE = 88578 ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 The goodness of fit, whether measured by R2, RSS, or the standard error of the regression (the estimate of the standard deviation of u, here denoted Root MSE), is likewise not affected by the change. 20

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH VOC GEN Source | SS df MS Number of obs = 74 ---------+------------------------------ F( 4, 69) = 29.63 Model | 9.2996e+11 4 2.3249e+11 Prob > F = 0.0000 Residual | 5.4138e+11 69 7.8461e+09 R-squared = 0.6320 ---------+------------------------------ Adj R-squared = 0.6107 Total | 1.4713e+12 73 2.0155e+10 Root MSE = 88578 ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 But the t tests are affected. In particular, the meaning of a null hypothesis for a dummy variable coefficient being equal to 0 is different. 21

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH VOC GEN Source | SS df MS Number of obs = 74 ---------+------------------------------ F( 4, 69) = 29.63 Model | 9.2996e+11 4 2.3249e+11 Prob > F = 0.0000 Residual | 5.4138e+11 69 7.8461e+09 R-squared = 0.6320 ---------+------------------------------ Adj R-squared = 0.6107 Total | 1.4713e+12 73 2.0155e+10 Root MSE = 88578 ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 For example, the t statistic for the technical school coefficient is for the null hypothesis that the overhead costs of technical schools are the same as those of skilled workers’ schools. 22

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH VOC GEN Source | SS df MS Number of obs = 74 ---------+------------------------------ F( 4, 69) = 29.63 Model | 9.2996e+11 4 2.3249e+11 Prob > F = 0.0000 Residual | 5.4138e+11 69 7.8461e+09 R-squared = 0.6320 ---------+------------------------------ Adj R-squared = 0.6107 Total | 1.4713e+12 73 2.0155e+10 Root MSE = 88578 ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 The t ratio in question is only 0.35, so the null hypothesis is not rejected. 23

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH VOC GEN Source | SS df MS Number of obs = 74 ---------+------------------------------ F( 4, 69) = 29.63 Model | 9.2996e+11 4 2.3249e+11 Prob > F = 0.0000 Residual | 5.4138e+11 69 7.8461e+09 R-squared = 0.6320 ---------+------------------------------ Adj R-squared = 0.6107 Total | 1.4713e+12 73 2.0155e+10 Root MSE = 88578 ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 The t ratio for the coefficient of VOC is –2.65, so one concludes that the overheads of vocational schools are significantly lower than those of skilled workers’ schools, at the 1% significance level. 24

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH VOC GEN Source | SS df MS Number of obs = 74 ---------+------------------------------ F( 4, 69) = 29.63 Model | 9.2996e+11 4 2.3249e+11 Prob > F = 0.0000 Residual | 5.4138e+11 69 7.8461e+09 R-squared = 0.6320 ---------+------------------------------ Adj R-squared = 0.6107 Total | 1.4713e+12 73 2.0155e+10 Root MSE = 88578 ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 General schools clearly have lower overhead costs than the skilled workers’ schools, according to the regression. 25

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH WORKER VOC ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 154110.9 26760.41 5.759 0.000 100725.3 207496.4 WORKER | 143362.4 27852.8 5.147 0.000 87797.57 198927.2 VOC | 53228.64 31061.65 1.714 0.091 -8737.646 115194.9 _cons | -54893.09 26673.08 -2.058 0.043 -108104.4 -1681.748 . reg COST N TECH VOC GEN ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 Note that there are some differences in the standard errors. The standard error of the coefficient of N is unaffected. 26

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH WORKER VOC ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 154110.9 26760.41 5.759 0.000 100725.3 207496.4 WORKER | 143362.4 27852.8 5.147 0.000 87797.57 198927.2 VOC | 53228.64 31061.65 1.714 0.091 -8737.646 115194.9 _cons | -54893.09 26673.08 -2.058 0.043 -108104.4 -1681.748 . reg COST N TECH VOC GEN ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 The one test involving the dummy variables that can be performed with either specification is the test of whether the overhead costs of general schools and skilled workers’ schools are different. 27

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH WORKER VOC ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 154110.9 26760.41 5.759 0.000 100725.3 207496.4 WORKER | 143362.4 27852.8 5.147 0.000 87797.57 198927.2 VOC | 53228.64 31061.65 1.714 0.091 -8737.646 115194.9 _cons | -54893.09 26673.08 -2.058 0.043 -108104.4 -1681.748 . reg COST N TECH VOC GEN ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 The choice of specification can make no difference to the outcome of this test. The only difference is caused by the fact that the regression coefficient has become negative in the second specification. 28

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH WORKER VOC ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 154110.9 26760.41 5.759 0.000 100725.3 207496.4 WORKER | 143362.4 27852.8 5.147 0.000 87797.57 198927.2 VOC | 53228.64 31061.65 1.714 0.091 -8737.646 115194.9 _cons | -54893.09 26673.08 -2.058 0.043 -108104.4 -1681.748 . reg COST N TECH VOC GEN ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 The standard error is the same, so the t statistic has the same absolute magnitude and the outcome of the test must be the same. 29

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH WORKER VOC ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 154110.9 26760.41 5.759 0.000 100725.3 207496.4 WORKER | 143362.4 27852.8 5.147 0.000 87797.57 198927.2 VOC | 53228.64 31061.65 1.714 0.091 -8737.646 115194.9 _cons | -54893.09 26673.08 -2.058 0.043 -108104.4 -1681.748 . reg COST N TECH VOC GEN ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 However the standard errors of the coefficients of the other dummy variables are slightly larger in the second specification. 30

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH WORKER VOC ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 154110.9 26760.41 5.759 0.000 100725.3 207496.4 WORKER | 143362.4 27852.8 5.147 0.000 87797.57 198927.2 VOC | 53228.64 31061.65 1.714 0.091 -8737.646 115194.9 _cons | -54893.09 26673.08 -2.058 0.043 -108104.4 -1681.748 . reg COST N TECH VOC GEN ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 This is because the skilled workers’ schools are less ‘normal’ or ‘basic’ than the general schools and there are fewer of them in the sample (only 17, as opposed to 28). 31

THE EFFECTS OF CHANGING THE REFERENCE CATEGORY . reg COST N TECH WORKER VOC ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 154110.9 26760.41 5.759 0.000 100725.3 207496.4 WORKER | 143362.4 27852.8 5.147 0.000 87797.57 198927.2 VOC | 53228.64 31061.65 1.714 0.091 -8737.646 115194.9 _cons | -54893.09 26673.08 -2.058 0.043 -108104.4 -1681.748 . reg COST N TECH VOC GEN ------------------------------------------------------------------------------ COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692 TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95 VOC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07 GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57 _cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6 As a consequence there is less precision in measuring the difference between their costs and those of the other schools than there was when general schools were the reference category. 32

Copyright Christopher Dougherty 2016. These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 5.2 of C. Dougherty, Introduction to Econometrics, fifth edition 2016, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre www.oxfordtextbooks.co.uk/orc/dougherty5e/. Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx or the University of London International Programmes distance learning course EC2020 Elements of Econometrics www.londoninternational.ac.uk/lse. 2016.05.03