Mathematical Modeling of Mitochondrial Adenine Nucleotide Translocase

Slides:



Advertisements
Similar presentations
Volume 95, Issue 12, Pages (December 2008)
Advertisements

Daichi Okuno, Masayoshi Nishiyama, Hiroyuki Noji  Biophysical Journal 
Volume 77, Issue 2, Pages (August 1999)
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Elena G. Yarmola, Dmitri A. Dranishnikov, Michael R. Bubb 
Volume 84, Issue 4, Pages (April 2003)
Ranjan K. Pradhan, Daniel A. Beard, Ranjan K. Dash  Biophysical Journal 
Volume 96, Issue 6, Pages (March 2009)
Volume 95, Issue 9, Pages (November 2008)
Kinetic Analysis of High Affinity Forms of Interleukin (IL)-13 Receptors: Suppression of IL-13 Binding by IL-2 Receptor γ Chain  Vladimir A. Kuznetsov,
Volume 98, Issue 7, Pages (April 2010)
Xianming Lin, Richard D. Veenstra  Biophysical Journal 
Torque Generation by the Fo motor of the Sodium ATPase
Marko Vendelin, Maris Lemba, Valdur A. Saks  Biophysical Journal 
Santosh K. Dasika, Kalyan C. Vinnakota, Daniel A. Beard 
The Binding Affinity of Ff Gene 5 Protein Depends on the Nearest-Neighbor Composition of the ssDNA Substrate  Tung-Chung Mou, Carla W. Gray, Donald M.
Volume 79, Issue 1, Pages 1-13 (July 2000)
Ranjan K. Dash, Feng Qi, Daniel A. Beard  Biophysical Journal 
Model Studies of the Dynamics of Bacterial Flagellar Motors
Stephen Cheley, Li-Qun Gu, Hagan Bayley  Chemistry & Biology 
Volume 83, Issue 6, Pages (December 2002)
DNA Hairpins: Fuel for Autonomous DNA Devices
Electrodiffusion Models of Neurons and Extracellular Space Using the Poisson-Nernst- Planck Equations—Numerical Simulation of the Intra- and Extracellular.
Volume 92, Issue 1, Pages (January 2007)
Megan T. Valentine, Steven M. Block  Biophysical Journal 
Volume 113, Issue 12, Pages (December 2017)
Mechanism of the αβ Conformational Change in F1-ATPase after ATP Hydrolysis: Free- Energy Simulations  Yuko Ito, Mitsunori Ikeguchi  Biophysical Journal 
Volume 103, Issue 4, Pages (August 2012)
Yi Qin Gao, Wei Yang, Martin Karplus  Cell 
H.M. Seeger, G. Marino, A. Alessandrini, P. Facci  Biophysical Journal 
Volume 100, Issue 5, Pages (March 2011)
Dániel Szöllősi, Gergely Szakács, Peter Chiba, Thomas Stockner 
Volume 88, Issue 1, Pages (January 2005)
Francis D. Appling, Aaron L. Lucius, David A. Schneider 
Alexander Sobolevsky, Sergey Koshelev  Biophysical Journal 
The Thermodynamic Meaning of Metabolic Exchange Fluxes
Hao Yuan Kueh, Philipp Niethammer, Timothy J. Mitchison 
Daichi Okuno, Masayoshi Nishiyama, Hiroyuki Noji  Biophysical Journal 
Nucleotide Effects on the Structure and Dynamics of Actin
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Catalysis-Enhancement via Rotary Fluctuation of F1-ATPase
Volume 113, Issue 7, Pages (October 2017)
Use of Helper Enzymes for ADP Removal in Infrared Spectroscopic Experiments: Application to Ca2+-ATPase  Man Liu, Eeva-Liisa Karjalainen, Andreas Barth 
A Chemically Reversible Brownian Motor: Application to Kinesin and Ncd
Sonia Cortassa, Brian O'Rourke, Raimond L. Winslow, Miguel A. Aon 
Blockers of VacA Provide Insights into the Structure of the Pore
Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy  Daniel Mann, Udo Höweler, Carsten Kötting, Klaus.
Volume 95, Issue 5, Pages (September 2008)
Volume 105, Issue 12, Pages (December 2013)
Vladimir Avdonin, Toshinori Hoshi  Biophysical Journal 
ATP synthase: What dictates the size of a ring?
Protein Self-Association Induced by Macromolecular Crowding: A Quantitative Analysis by Magnetic Relaxation Dispersion  Karim Snoussi, Bertil Halle  Biophysical.
Electrogenic Partial Reactions of the Gastric H,K-ATPase
Rikiya Watanabe, Makoto Genda, Yasuyuki Kato-Yamada, Hiroyuki Noji 
Ranjan K. Dash, Feng Qi, Daniel A. Beard  Biophysical Journal 
Hao Yuan Kueh, Philipp Niethammer, Timothy J. Mitchison 
Effects of Receptor Interaction in Bacterial Chemotaxis
Volume 94, Issue 8, Pages (April 2008)
Rinat Nahum-Levy, Dafna Lipinski, Sara Shavit, Morris Benveniste 
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Dagmar Flöck, Volkhard Helms  Biophysical Journal 
Inwardly Rectifying Current-Voltage Relationship of Small-Conductance Ca2+-Activated K+ Channels Rendered by Intracellular Divalent Cation Blockade  Heun.
Volume 88, Issue 6, Pages (June 2005)
Jason N. Bazil, Daniel A. Beard, Kalyan C. Vinnakota 
Computed Pore Potentials of the Nicotinic Acetylcholine Receptor
Christina Karatzaferi, Marc K. Chinn, Roger Cooke  Biophysical Journal 
Volume 98, Issue 7, Pages (April 2010)
ATP Inhibition and Rectification of a Ca2+-Activated Anion Channel in Sarcoplasmic Reticulum of Skeletal Muscle  Gerard P. Ahern, Derek R. Laver  Biophysical.
Volume 104, Issue 2, Pages (January 2013)
Bistability of Cell Adhesion in Shear Flow
Presentation transcript:

Mathematical Modeling of Mitochondrial Adenine Nucleotide Translocase Eugeniy Metelkin, Igor Goryanin, Oleg Demin  Biophysical Journal  Volume 90, Issue 2, Pages 423-432 (January 2006) DOI: 10.1529/biophysj.105.061986 Copyright © 2006 The Biophysical Society Terms and Conditions

Figure 1 Possible position of the subunits in the functional unit of ANT. (A) Isotropic position of the trans type: both sides of the membrane are identical for binding and transfer. (B) Anisotropic position of the cis type: there is only one type of site on each side of the membrane. Biophysical Journal 2006 90, 423-432DOI: (10.1529/biophysj.105.061986) Copyright © 2006 The Biophysical Society Terms and Conditions

Figure 2 Kinetic scheme of the catalytic cycle of the mitochondrial ANT. T and D are understood as ATP and ADP, respectively, the subscripted index indicating the location: i, inside the matrix; and o, within the intramembrane space. E is the free form of the enzyme. XEY is a ternary complex of an ANT dimer with molecules X from the matrix and Y from the intramembrane space. Lines show processes of complex formation. Arrows show transfer processes. The scheme shows the constants of the transfer rates and dissociation constants for the corresponding stages. Biophysical Journal 2006 90, 423-432DOI: (10.1529/biophysj.105.061986) Copyright © 2006 The Biophysical Society Terms and Conditions

Figure 3 Scheme of ANT used to derive the dependence of the transfer rate on the electrostatic membrane potential. (A–C) Consecutive states of the ANT functional unit in the process of adenylate translocation. δT(D) is the ratio of the potential difference between the adenylate bound at the site of ANT facing the external side of the membrane and adenylate in the bulk phase to the total membrane potential, δT(D)in is the ratio of the potential difference between the adenylate bound at the site of ANT facing the internal side of the membrane and adenylate in the bulk phase to the total membrane potential, a1 is the displacement of the external adenylate from the coordinate of the maximum of the potential barrier, and a2 is the displacement of the internal adenylate from the coordinate of the maximum of the potential barrier. Biophysical Journal 2006 90, 423-432DOI: (10.1529/biophysj.105.061986) Copyright © 2006 The Biophysical Society Terms and Conditions

Figure 4 Potential barrier profile used to derive the dependence of the rate upon the membrane potential along the reaction coordinate. The dashed line shows the profile of the potential created by the field of the charged membrane. A, B, and C correspond to the ANT states depicted in Fig. 3. Biophysical Journal 2006 90, 423-432DOI: (10.1529/biophysj.105.061986) Copyright © 2006 The Biophysical Society Terms and Conditions

Figure 5 Results of parameter estimation. The experimental values (symbols) taken from Kraemer and Klingenberg (10) and model-generated curves (solid lines), at pH 8.0, Mg2+=0 are shown. (A) The dependence of influx rate of the labeled adenylate (v*) on: 1), the concentration of the external labeled ATP (Ti=10 mM,Di=0 mM,Do=0 μM,Ψ=180 mM); 2), the concentration of the external labeled ATP (Ti=10 mM,Di=0 mM,Do=0 μM,Ψ=0 mM); 3), the concentration of the external labeled ADP (Ti=0 mM,Di=10 mM,To=0 μM,Ψ=180 mV); and 4), the concentration of the external labeled ADP (Ti=0 mM,Di=10 mM,To=0 μM,Ψ=0 mV). (B) The dependence of influx rate of the labeled adenylate (v*) on the concentration of the external labeled ADP: 1), Ti=5 mM,Di=5 mM,To=0 μM,Ψ=180 mV; 2), Ti=5 mM,Di=5 mM,To=100 μM,Ψ=180 mV; 3), Ti=5 mM,Di=5 mM,To=400 μM,Ψ=180 mV; 4), Ti=5 mM,Di=5 mM,To=0 μM,Ψ=0 mV; 5), Ti=5 mM,Di=5 mM,To=20 μM,Ψ=0 mV; and 6), Ti=5 mM,Di=5 mM,To=100 μM,Ψ=0 mV. (C) The dependence of influx rate of the labeled adenylate (v*) on: 1), the concentration of the external labeled ADP (Ti=5 mM,Di=5 mM,To∗=Do∗,Ψ=180 mV); 2), the concentration of the external labeled ADP (Ti=5 mM,Di=5 mM,To∗=Do∗,Ψ=0 mV); 3), the concentration of the external labeled ATP (Ti=5 mM,Di=5 mM,Do∗= To∗,Ψ=180 mV); and 4), the concentration of the external labeled ATP (Ti=5 mM,Di=5 mM,Do∗= To∗,Ψ=0 mV). Biophysical Journal 2006 90, 423-432DOI: (10.1529/biophysj.105.061986) Copyright © 2006 The Biophysical Society Terms and Conditions

Figure 6 (A) Calculated dependence of the ATP/ADP exchange rate upon concentration of the external ADP at various fixed values of the membrane potential. pHi=7.8,pHo=7.2,Mg2+=1 mM,Ti=Di=5 mM,To=2 mM. (B) The calculated dependence of the ATP/ADP exchange rate upon the membrane potential. Parameter values: pHi=7.8,pHo=7.2,Mg2+=1 mM,Ti=Di=5 mM,To=2 mM, Do=50 μM. (C) The calculated dependence of the ATP/ADP exchange “effectiveness” (ratio of exchange rate to the total number of turnovers) upon the membrane potential. Parameter values: pHi=7.8, pHo=7.2,Mg2+=1 mM,Ti=Di=5 mM,To=2 mM,Do=50 μM. (D) The calculated dependence of the ATP/ADP exchange rate upon pH inside and outside mitochondria. Each curve involves the change of the pH values in one of the compartments relative to the fixed pH in the other one. Parameter values: pHi=7.8, pHo=7.2, Mg2+=1 mM,Ti=Di=5 mM, To=2 mM,Do=50 μM,φ=170 mV. Biophysical Journal 2006 90, 423-432DOI: (10.1529/biophysj.105.061986) Copyright © 2006 The Biophysical Society Terms and Conditions