Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang

Slides:



Advertisements
Similar presentations
July 22, 2005Modeling1 Modeling CESR-c D. Rubin. July 22, 2005Modeling2 Simulation Comparison of simulation results with measurements Simulated Dependence.
Advertisements

Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
CASA Collider Design Review Retreat HERA The Only Lepton-Hadron Collider Ever Been Built Worldwide Yuhong Zhang February 24, 2010.
Nonlinear Dynamic Study of FCC-ee Pavel Piminov, Budker Institute of Nuclear Physics, Novosibirsk, Russia.
MEIC Electron Collider Ring Design Fanglei Lin MEIC Collaboration Meeting, October 5, 2015.
PEP-X Ultra Low Emittance Storage Ring Design at SLAC Lattice Design and Optimization Min-Huey Wang SLAC National Accelerator Laboratory With contributions.
Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,
Hybrid Synchrotron Arc: 2 Dipoles per Half Cell J. Scott Berg Advanced Accelerator Group Meeting 28 July 2011.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
Parameter scan for the CLIC damping rings July 23rd, 2008 Y. Papaphilippou Thanks to H. Braun, M. Korostelev and D. Schulte.
JLEIC Electron Collider Ring Design and Polarization
The Studies of Dynamic Aperture on CEPC
Large Booster and Collider Ring
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
First Look at Nonlinear Dynamics in the Electron Collider Ring
Optimization of CEPC Dynamic Aperture
Electron collider ring Chromaticity Compensation and dynamic aperture
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
DA Study for the CEPC Partial Double Ring Scheme
LHC (SSC) Byung Yunn CASA.
ILC 3.2 km DR design based on FODO lattice (DMC3)
Collider Ring Optics & Related Issues
JLEIC Collaboration Meeting Spring 2017
ILC 3.2 km DR design based on FODO lattice (DMC3)
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
RHIC Magnets for JLEIC Yuhong Zhang May 11, 2018.
MEIC Shifting Magnet Tim Michalski August 6, 2015.
Vertical Dogleg Options for the Ion Collider Ring
JLEIC Collider Rings’ Geometry Options
Progress on Non-linear Beam Dynamic Study
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Parameters Changed in New MEIC Design
Update on MEIC Nonlinear Dynamics Work
Feasibility of Recuperation of Magnets in Decommissioned Storage Rings
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
The Feasibility of Using RHIC Magnets for MEIC and Cost Impact
The MEIC electron ring as the large ion booster
Ion Collider Ring Using Superferric Magnets
RF Parameters for New 2.2 km MEIC Design
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Alternative Ion Injector Design
Fanglei Lin, Yuri Nosochkov Vasiliy Morozov, Yuhong Zhang, Guohui Wei
Update on JLEIC Electron Ring Design
Multipole Limit Survey of FFQ and Large-beta Dipole
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
JLEIC Collider Rings’ Geometry Options (II)
Progress Update on the Electron Polarization Study in the JLEIC
MEIC New Baseline: Performance and Accelerator R&D
First results of proton spin tracking in a figure-8 ring
MEIC Alternative Design Part V
Status of IR / Nonlinear Dynamics Studies
Possibility of MEIC Arc Cell Using PEP-II Dipole
More on MEIC Beam Synchronization
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Upgrade on Compensation of Detector Solenoid effects
Arc FODO Cell Inventory
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
Summary of JLEIC Electron Ring Nonlinear Dynamics Studies
MEIC Alternative Design Part III
New Chicane Option Total bending angle and start and end points fixed
RF Parameters for New 2.2 km MEIC Design
Ion Path Length Compensation with Chicane
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
A TME-like Lattice for DA Studies
Error Sensitivity in MEIC
Update on DA Studies for a TME-like Lattice
Large Ion Booster Re-design Update
3.2 km FODO lattice for 10 Hz operation (DMC4)
JLEIC electron ring with damping wigglers
Presentation transcript:

Possibility of Recuperating PEP-II HER Magnets for MEIC Electron Ring (II) Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang MEIC R&D Meeting, JLab, August 14, 2014 F. Lin

MEIC FODO & TME-like Cell MEIC FODO cell MEIC TME-like cell Phase advance: 1.5(H), 0.5(V) Every 2 cells generate 3 and  phase advance in horizontal and vertical plane, respectively Maximum sextupole pole-tip field at 4.5cm aperture radius is ~ 0.5 T for compensation of cell’s chromaticities (PEP or PEP-II sextupoles can be reused in MEIC ) Phase advance: 135(H & V) Every 4 cells generate 3 phase advance in both horizontal and vertical planes Maximum sextupole pole-tip field at 4.5cm aperture radius is ~ 0.2 T for compensation of cell’s chromaticities

PEP-II HER vs. MEIC Arc Cell Parameters Unit PEP-II HER MEIC FODO cell (135 phase advance) MEIC TME-like cell (1.5/0.5 pha. adv.) MEIC TME-like cell (1.5/0.5 pha. adv.) Energy GeV 9 12 5 Dipole length m 5.4 Bending angle deg 1.875 4.108 4.85 4.45 Bending radius 165.0 75.3 (57.9) 75.3 63.7 69.5 Magnetic field T 0.1819 0.5314 0.2214 0.6280 0.2617 0.5757 0.2399 Quad length 0.7185 0.37 0.7/0.6/0.6 Field gradient T/m 5.48 29.5 28/29/29 12/12/12 Aperture radius cm ~5 4.5 Cell length 15.2 13.78 17.36 Number of cell 16*6 52 44 48 Arc length 243.2*6 716.56 (673.92) 716.56 763.84 833.28 Arc 43 90 160 C 83 173 308 Nor. emittance um 845 2746 (438) 199 (31.7) 312 (438) 22.6 (31.7) 240 (438) 17.4 (31.7) Sagitta R 2.2 4.8 5.7 5.2 * The current values are given in parenthesis

Some Practical Considerations Orbit curvature changes inside the dipoles  limit maximum sagitta R PEP-II FODO cell MEIC FODO cell MEIC TME-like cell optimal curvature   4

Back Up

MEIC’s e-Ring Current Equilibrium Emittance Normalized Equilibrium Horizontal Emittance εxN (μm) Energy (GeV) 3 5 6 7 8 9 10 11 12 Arc FODO (120 phase advance) 6.8 31.7 54.7 86.9 129.8 184.8 253.5 337.4 438.2 Arc (FODO + spin rotators) 11.8 54.5 94.2 149.6 223.2 317.8 435.9 580.4 753.4 Whole ring (Arc + IR) 15.4 71.3 123.2 195.7 292.1 415.8 570.4 759.2 985.7 Beam energy Gev 3 5 6 7 8 9 10 11 12 Beam current A 2.0 1.1 0.65 0.4 0.26 0.18 0.13 Total SR power MW 0.49 3.82 5.28 5.38 5.43 5.35 5.37 5.49 Linear SR power density kW/m 1.02 7.87 10.88 11.08 11.10 11.01 11.06 11.31 Energy loss per turn MeV 0.17 1.27 2.64 4.89 13.37 29.84 Energy spread 10-3 0.34 0.56 0.68 0.79 1.01 1.24 Longitudinal damping time ms 83.6 18.1 10.4 6.6 3.1 1.7

PEP-II HER vs. MEIC Arc Cell Parameters Unit PEP-II HER MEIC FODO cell MEIC TME-like cell Energy GeV 9 12 5 Dipole length m 5.4 Bending angle deg 1.875 4.272 5.34 Bending radius 165.0 72.4 (57.9) 72.4 57.9 (57.9) 57.9 Magnetic field T 0.1819 0.5527 0.4145 0.2303 0.6908 0.2878 Quad length 0.45 0.35 0.5/0.6/0.6 Field gradient T/m 9.79 29 22 27/28/26 11/12/11 Aperture radius cm 3.6 (?) 4.5 FODO length 15.2 13.74 17.16 Number of FODO 16*6 50 40 Arc length 243.2*6 687 (673.92) 687 686.4 Normalized emittance um 845 3478 (438) 1446 (184.8) 252 (31.7) 951 (438) 69 (31.7) SR power density kW/m 7.23 (11.31) 7.04 (11.01) 5.03 (7.87) 11.31 7.87 Total SR power MW 4.39 (5.49) 4.28 (5.35) 3.05 (3.82) 5.49 3.82 * The current values are given in parenthesis

Some Practical Considerations Orbit curvature changes inside the dipoles  limit maximum sagitta R PEP-II FODO cell MEIC FODO cell MEIC TME-like cell optimal curvature   8