Figure A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia.

Slides:



Advertisements
Similar presentations
Figure 2. MRI features of patients with MS who had antibodies to myelin oligodendrocyte glycoprotein MRI features of patients with MS who had antibodies.
Advertisements

Figure 2 ERG amplitude reduction in the follow-up study
Figure 1 Initial brain imaging (A–C) patient 1; (D–F) patient 2; (G–I) patient 3; (J–L) patient 4; and (M) patient 2. Initial brain imaging (A–C) patient.
Figure 1 Phenotype and genotype of an undiagnosed family with autosomal recessive spastic ataxia Phenotype and genotype of an undiagnosed family with autosomal.
Figure 1 Box plot of the venous diameter in lesions
Figure 1 Brain MRI findings in the present case
Figure MRI of anti-MOG-IgG–associated myelitis
Figure 2 Evolution of MRI abnormalities in faciobrachial dystonic seizures Axial fluid- attenuated inversion recovery (FLAIR)-weighted images from patient.
Figure 2 Spinal cord lesions
Figure Neuroimaging and pathology
Figure 4 Correlation of age with [11C](R)-PK11195 binding in the normal-appearing white matter (NAWM) and thalami Correlation of age with [11C](R)-PK11195.
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure Facial photograph during headache attack and brain and upper cervical cord MRI Facial photograph during headache attack and brain and upper cervical.
Figure 1 Spine MRI, sagittal and axial views of patients with idiopathic transverse myelitis with VPS37A mutations Spine MRI, sagittal and axial views.
Figure 3 Example of venous narrowing
Figure 2 Neurochemical profiles for each neurocognitive trajectory
Figure Immune checkpoint inhibitor–induced encephalitis before and after treatment with natalizumab Immune checkpoint inhibitor–induced encephalitis before.
Figure 1. Prebiopsy and postbiopsy MRI
Figure 1 MRI, pathology, and EEG findings(A) Axial fluid-attenuated inversion recovery (FLAIR) MRI sequences of the brain showing right frontal and parietal.
Figure 1 Quantitative spinal cord MRI maps and segmentations
Figure 2 T2-weighted and subtraction images
Figure 2 Exemplary MRI of a patient with contrast enhancement on postcontrast FLAIR MRI of a 54-year-old patient with viral meningitis caused by varicella-zoster.
Figure 2 Forest plots for subgroup analyses
Figure MRI and neuropathologic characteristics of the tumefactive demyelinating lesion in our patient MRI and neuropathologic characteristics of the tumefactive.
Figure 1 Characteristics of the German National MS Cohort
Figure 3 Clinical outcome of apheresis therapies for NMOSD attacks
Figure 1 White matter lesion central vein visibility in MS and absence in small vessel disease (SVD)‏ White matter lesion central vein visibility in MS.
Figure 2 Example of venous narrowing
Figure 1 MRI of inflammatory myelitis before and after treatment
Figure 1 Radiologic features of human myelin oligodendrocyte glycoprotein immunoglobulin G–positive patients with cranial nerve involvement Radiologic.
Figure 1 Illustration of white matter– and lesion-associated regions of interest (ROIs)‏ Illustration of white matter– and lesion-associated regions of.
Figure Family tree with the HLA haplotyping of 6 members of the family
Figure 1 Family pedigree and MRI
Figure Comparison between minutes of MVPA/day and nDGv in patients with MS (green) or monoADS (blue)‏ Comparison between minutes of MVPA/day and nDGv in.
Figure 1 Patients with acute anti–NMDA receptor encephalitis have marked hypometabolism of the visual cortical brain region correlating with the medial.
Figure 1 [18F]florbetapir standardized uptake value ratio analytical method [18F]florbetapir standardized uptake value ratio analytical method Flowchart.
Figure 1 Phenotype and functional properties of B cells in MS and HCs at baseline Phenotype and functional properties of B cells in MS and HCs at baseline.
Figure 1 Evolution of MRI findings during interleukin (IL)–7 therapy
Figure 1 Imaging of disease onset and treatment response Repeat MRI scans including fluid-attenuated inversion recovery (FLAIR) (A) and T2 fast field echo.
Figure 1 Radiologic features of patients with white matter syndromes in association with NMDA receptor antibodies Radiologic features of patients with.
Figure 1 MRI findings over time
Figure Imaging, histology/immunohistochemistry, and schematic course of treatment with corresponding clinical and radiologic disease activity Imaging,
Figure 2 Changes in fatigue under treatment
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure Brain MRI findings before and during appearance of lymphoproliferative disorder and pathology findings of cerebellar lesion Brain MRI findings before.
Figure 2 Repopulation of CD19+ cells in low and high BSA patients and calculation of the BSA Repopulation of CD19+ cells in low and high BSA patients and.
Figure 2 Frequency of the proportion of total WMLs with central veins in PPMS, RRMS, and SVD Frequency of the proportion of total WMLs with central veins.
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
Figure 2 Overview of apheresis therapies
Figure 1 Detailed overview of treatment course and paraclinical findings Maximum intensity projection maps of supratentorial inversion recovery images.
Yian Gu et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e521
Ingo Kleiter et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e504
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
Figure 1 MRIs (case 1)‏ MRIs (case 1) An enlarging T2 lesion in the cerebral white matter near the angular gyrus and a new lesion in the left middle cerebellar.
Figure 2 MRIs (cases 2 and 3)‏
Figure 1 Imaging and histopathologic characteristics of patients with CNS-FHL Imaging and histopathologic characteristics of patients with CNS-FHL FLAIR.
Figure Rapid progression of lesions after natalizumab treatment(A) MRI from February Rapid progression of lesions after natalizumab treatment(A)
Figure 3 Freedom from clinical disease activity during 36 months of fingolimod treatment Freedom from clinical disease activity during 36 months of fingolimod.
Figure 4 Patient 3 MRI evolution over time
Figure 3 Patient 2 MRI evolution over time before relapse
Figure 1 Segmentation of the normal-appearing periependymal white matter Segmentation of the normal-appearing periependymal white matter The figure demonstrates.
Figure 2 Time from incident ADS event to MS diagnosis
Figure 2 Patient 1 MRI evolution over time
Figure 4 Venn diagram for B-cell Sup proteins compared with proteins from exosome-enriched fractions from a human B-cell line Venn diagram for B-cell Sup.
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
 Axial magnetic resonance imaging (MRI) of a 30 year old man with relapsing remitting multiple sclerosis (MS) showing multiple periventricular lesions:
Figure (A and B) Effect of canakinumab in muscle strength measured in each patient as mean bilateral GF (A) and TMS (B) during the mean study period of.
Figure 1 MRIs MRIs (A and B) Axial FLAIR images of the brain demonstrate multifocal parenchymal lesions including the right hippocampus, right midbrain,
Chronic CNS-IRIS without coinfection.
Presentation transcript:

Figure A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia Axial fluid-attenuated inversion recovery (FLAIR) image of the posterior fossa (A) from March 2018 showed a new punctate enhancing lesion in the right cerebellar deep white matter (green arrow), which was disproportionate to the clinical cerebellar syndrome. September 2017 axial (B) and sagittal (C) FLAIR images compared with March 2018 axial (D) and sagittal (E) FLAIR images showed interval development of asymmetrical pathologic cerebellar atrophy with widened sulci (yellow arrows). Patchy cortical FLAIR hyperintensities were also observed in the cerebellar folia (purple arrow). (F–H) Coronal post-contrast T1-weighted images of the cerebellar hemisphere performed at 1-month intervals during the 2018 admission showed development of leptomeningeal and parenchymal enhancement (blue arrows) following withdrawal of natalizumab and after plasma exchange treatment suggestive of immune reconstitution inflammatory syndrome (IRIS). Partial resolution of the enhancement was also demonstrated subsequently following steroid therapy. David A. Lapides et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e546 Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.