Figure 3 Within-group comparisons (before–after)‏

Slides:



Advertisements
Similar presentations
Figure Pedigrees of the SCA42 families identified in this study
Advertisements

Figure 2 ERG amplitude reduction in the follow-up study
Figure 2 Sanger sequencing, conservation, and summary of known ACO2 mutations Sanger sequencing, conservation, and summary of known ACO2 mutations (A)
Figure 1 Summary of prior diagnostic workup in neuromuscular disorder cases Summary of prior diagnostic workup in neuromuscular disorder cases Percentage.
Figure 3 Pedigree of familial idiopathic transverse myelitis
Figure 1 Box plot of the venous diameter in lesions
Figure 2 Needle biopsy of the left vastus lateralis
Figure 1 Stiff-person syndrome spectrum patient serum bound to membranes of live GlyRα1-transfected HEK293 cells Stiff-person syndrome spectrum patient.
Figure 4 Correlation of age with [11C](R)-PK11195 binding in the normal-appearing white matter (NAWM) and thalami Correlation of age with [11C](R)-PK11195.
Figure 1 Hierarchical clustering (HCL) outcome of all tested samples with the expression profile of the case report set as unknown Hierarchical clustering.
Figure 2 Anti-LINGO-1 (Li81) does not affect cytokine production
Figure 1 Treg percentage and suppressive function increased during each round of Treg infusions Treg percentage and suppressive function increased during.
Figure 1 Spine MRI, sagittal and axial views of patients with idiopathic transverse myelitis with VPS37A mutations Spine MRI, sagittal and axial views.
Figure 1 Comparison of miR-150-5p (log scale), prednisone dose (mg), and QMG score between the thymectomy (ETTX) and prednisone groups Comparison of miR-150-5p.
Figure 4 Mitochondrial respiration is affected in lymphoblastoid cell lines (LCLs) of ACO2 mutation carriers Mitochondrial respiration is affected in lymphoblastoid.
Figure Pedigree of the family
Figure 4 Abundance of cytokines which showed significant difference in expression in the plasma and the cultured PBMC of patients with RRMS Abundance of.
Figure 2 Luciferase assays of transiently transfected HEK 293 cells with reporter constructs containing the 766-bp wild-type KCNJ18 or c.-542 T/A mutant.
Figure 3 Gene expression in CSF cell pellets
Figure 2 Correlation between total IgG levels and anti-AQP4 IgG titer
Figure 1 Dominant and recessive missense and nonsense variants in neurofilament light (NEFL)‏ Dominant and recessive missense and nonsense variants in.
Figure 3 Temporal trends in FALS incidence
Table 4 Associations in SNP array data between the Braak stage and previously known AD risk loci (341 variants) comparing participants with Braak stage.
Figure 1 All patients with pediatric genetic movement disorders, their genetic diagnoses, and type of genetic investigations All patients with pediatric.
Figure 5 Neurite structure is not disrupted by the lack of neurofilament light (NEFL)‏ Neurite structure is not disrupted by the lack of neurofilament.
Figure 2 Linkage analysis of chromosome 19
Figure 1 White matter lesion central vein visibility in MS and absence in small vessel disease (SVD)‏ White matter lesion central vein visibility in MS.
Figure 3 Mutation carrier–derived lymphoblastoid cell lines (LCLs) show decreased aconitase 2 activity and mitochondrial respiration deficiency compared.
Figure Family tree with the HLA haplotyping of 6 members of the family
Figure 4 Relative abundances of the order Clostridiales and its family members are differentially changed by therapy Relative abundances of the order Clostridiales.
Figure 3 Analysis of the prognostic value of IL-10–producing B cells or IL-6/IL-10–B-cell ratio measurements in patients with RIS/CIS MS Analysis of the.
Figure Comparison between minutes of MVPA/day and nDGv in patients with MS (green) or monoADS (blue)‏ Comparison between minutes of MVPA/day and nDGv in.
Figure 2 Functionally significant genes
Table 2 Rs number, gene, OR, 95% CI, and permutation p value for the statistical significant variants resulted from allelic association analysis association.
Figure 1 Family pedigree and DNA sequencing results
Figure 4 Voltage-clamp recordings of KCNJ18 carrying the patient's SNVs expressed in Xenopus laevis oocytes under control conditions and after application.
Figure 1 [18F]florbetapir standardized uptake value ratio analytical method [18F]florbetapir standardized uptake value ratio analytical method Flowchart.
Figure Alluvial plot of modified Rankin Scale (mRS) scores during and at the end of hospital stay Alluvial plot of modified Rankin Scale (mRS) scores during.
Figure 3 Voltage-clamp recording of the wild-type KCNJ18 (left) and the KCNJ18 carrying the patient's SNVs (right) expressed in Xenopus laevis oocytes.
Figure 1 Phenotype and functional properties of B cells in MS and HCs at baseline Phenotype and functional properties of B cells in MS and HCs at baseline.
Figure 1 Flowchart of patient inclusion
Figure 1 Histamine flare in patients and controls
Figure 1 Considerations for concussed athletes leading to medical care or return to sport (RTS)‏ Considerations for concussed athletes leading to medical.
Figure 2 Longitudinal relationship between CSF glucose and protein changes Longitudinal relationship between CSF glucose and protein changes Delta glucose.
Figure 2 Global tau-PET distribution in familial prion disease mirrors the distribution seen in Alzheimer disease Global tau-PET distribution in familial.
Figure 2 Kaplan-Meier survival graphs for 10-year risks of overall and post-90-day recurrent ischemic stroke (IS) and death Kaplan-Meier survival graphs.
Figure 1 Annualized percentage brain volume change
Figure 2 BVL according to on-study disability worsening
Figure 2 Repopulation of CD19+ cells in low and high BSA patients and calculation of the BSA Repopulation of CD19+ cells in low and high BSA patients and.
Figure 2 Frequency of the proportion of total WMLs with central veins in PPMS, RRMS, and SVD Frequency of the proportion of total WMLs with central veins.
Figure 2 Natalizumab increases expression of proinflammatory genes and cytokines by CD49d+ memory CD4 cells Natalizumab increases expression of proinflammatory.
Figure 4 CHCHD2 but not TOP1MT expression rescues molecular defects
Figure 3 DMF promotes an anti-inflammatory cytokine B-cell profile
Figure 1 bvFTD PINBPA network
Figure 2 Seizure outcomes
Yian Gu et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e521
Ingo Kleiter et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e504
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure 2 Pedigrees of families and segregation analysis of variants c
Figure 3 C5B3 blocked MAC formation
Figure 2 LMNB1 mRNA expression
Figure 1 ASO functions ASO functions Target mRNA fates depending on ASO mechanism of action that is determined by where the ASO is targeted and by ASO.
Figure 3 Changing appearance of the frontal cortex with age associated with increasing myelination Changing appearance of the frontal cortex with age associated.
Figure 2 Between-group comparisons
Figure 2 Time from incident ADS event to MS diagnosis
Figure 2 Nonhuman primate brain immunohistochemistry
Figure 4 Venn diagram for B-cell Sup proteins compared with proteins from exosome-enriched fractions from a human B-cell line Venn diagram for B-cell Sup.
Figure 3 A receiver operating characteristic curve of days to IVMP as a predictor of failure to regain 0.2 logMAR (20/30) vision (AUC 0.84, p < 0.001)‏
Figure (A and B) Effect of canakinumab in muscle strength measured in each patient as mean bilateral GF (A) and TMS (B) during the mean study period of.
Figure 4 Western blotting
Presentation transcript:

Figure 3 Within-group comparisons (before–after)‏ Within-group comparisons (before–after) Effects of vitamin D3 on serum levels of proinflammatory and anti-inflammatory markers (n = 25 per group) (A–C) and the ratio of pro-to anti-inflammatory cytokines (D and E). IL-6, IL-17A, and IL-10 mRNA expression levels of healthy participants, patients with MS, and first-degree relatives. Paired t test analysis was used. Data were expressed as mean ± SD. *p < 0.05 was regarded as statistically significant. Reza Hashemi et al. Neurol Genet 2018;4:e278 Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.