Microwave and Millimeter-wave Technology(MMT) Lab 微波毫米波集成电路与系统实验室 Microwave and Millimeter-wave Technology(MMT) Lab Quasi-Physical Zone Division (QPZD) Model for Wide-bandgap Semiconductor Technology Yuehang Xu Email:yuehangxu@uestc.edu.cn
Outline Background Theory of QPZD model QPZD Diamond FET model Summary
Trends of RF transistors Ⅰ. Background Trends of RF transistors Performance (Power、noise) Si, Ge, etc. GaAs,InP, etc. GaN, Diamond, etc. Integration (node) ~um ~nm < 1nm
Ⅰ. Background Material process model design system
Ⅰ. Background Compact model coalition(CMC) UESTC model since 2005 1.SiC MESFET 2.GaAs HEMT 3.GaN HEMT 4.InP HBT 5.Graphene FET 6.CMOS 7.Diamond FET Empirical model (Angelov) Physical compact model
Physical compact models Ⅰ. Background Physical compact models Pao-Sah I-V Current equation IEEE Trans. Electron Devices, 52(8),1868-1873, 2005. Surface potential model (i.e. ASM-HEMT) Charge based model ( i.e. MVSG) Advantages More intuitive in physics; Less fitting parameters; Naturally scalable; Problems Increasing fitting parameters when considering self-heating, ambient temperature, and trapping effects; Easily not convergence in microwave high power amplifiers (HPAs) ; Is there any model with less fitting parameters, high convergence for microwave application?
Outline Background Theory of QPZD model QPZD Diamond FET model Summary
Theory of QPZD model Zone Division Triode operation Saturation operation Intrinsic FET Zone(IFZ) Space-charge Limited Zone(SLZ) Charge Deficit Zone(CDZ)
Theory of QPZD model Drain current model D. Hou, G. L. Bilbro, and R. J. Trew, IEEE TED , 2013. Zhang wen, Yuehang Xu* , et al.,IEEE T-MTT, 2017,65(12):5113-5122
Theory of QPZD model Capacitance models Gate channel capacitance Cgc in ON state Inner fringing capacitance Cif in OFF state Bias-dependent The depletion regions Yonghao Jia , Yuehang Xu*, etc. IEEE T-ED, 2019,66(1):357-362
Analytical capacitance equations Theory of QPZD model Analytical capacitance equations Ward–Dutton charge partition (IEEE JSSCC,1980)
Includes self-heating, ambient temperature, trapping effects Theory of QPZD model Includes self-heating, ambient temperature, trapping effects
Does it work for GaN HEMTs and MMICs? Theory of QPZD model Does it work for GaN HEMTs and MMICs? (a)2×125μm (b)6×100μm (c)8×125μm 0.25um GaN HEMT, 4*125um, Vgs=-3V, Vds=25V
Does it work for GaN HEMTs and MMICs? Theory of QPZD model Does it work for GaN HEMTs and MMICs? X-band MMIC
Is it physical enough for statistical model ? Theory of QPZD model Is it physical enough for statistical model ? DC-IV Measurement for batches of devices Statistical property of physical parameters: d, vmax, nsmax, µsat Statistical Model Automatic Parameter Extraction d vmax nsmax, α1, α2, α3, βn a0, a1, b0, b1, b2 ns µ Parameter Data Set Factor Analysis Statistical Model Zhang Wen , Shuman Mao, Yuehang Xu*, etc. IEEE IMS, 2019
Theory of QPZD model Factor Analysis (FA) Standardization Correlation Coefficient Common Factor Load Matrix Factor Calculation
Theory of QPZD model vmax d µsat nsmax
Statistical Property of the Physical Parameters Theory of QPZD model Statistical Property of the Physical Parameters Simulation Measured
Power Sweep Characteristics Theory of QPZD model Power Sweep Characteristics
Sensitive Analysis in Power Sweep Theory of QPZD model Sensitive Analysis in Power Sweep vmax ns
Sensitive Analysis in Impedance Chart Theory of QPZD model Sensitive Analysis in Impedance Chart
Outline Background Theory of QPZD model QPZD Diamond FET model Summary
Diamond FET model Michale W. Geis, Phys. Status Solidi A. 2018
Lower Energy Consumption Diamond FET model Power Electronics Application RF Electronics Application High-Temperature High-Power High-Frequency Application Lower Energy Consumption Higher Output Power
Diamond FET model World-scale Diamond Device Research Distribution Univ of Bristol : Martin Kuball Univ of Glasgow: David Moran Univ of Ulm: E.Kohn Institute Neel:Pham Univ of Rome Tor Vergata: Pasciuto Waseda University Hiroshi Kawarada Saga University Makoto Kasu World-scale Diamond Device Research Distribution
Diamond FET model Developments of TCAD Simulation Models for C-H Diamond FETs 2001 0.2 nm p-type doping in diamond surface H atoms of the C-H bonds act as surface acceptors 2017 Negative fixed charge sheet induces a 2DHG channel transfer doping mechanism due to C-H dipoles and surface adsorbates is not clear 2017 Negative charge sheet (source to drain) induces a 2DHG channel, and positive charge sheet (under gate) calibrates the model Not explain the physical meaning of the positive charge sheet and the role of surface adsorbate layer in the transfer doping
Diamond FET model C-H Diamond FET Operation Mechanism and TCAD Model C-H dipole effect induced transfer doping mechanism I-V characteristics Transfer characteristics Drift-Diffusion transport equation Wachutka’s thermodynamically rigorous model Shockley-Read-Hall (SRH) Recombination Model Yu Fu, Ruimin Xu, …, Yuehang Xu* IEEE EDL, 2018
Diamond FET model Zone division for diamond FET TCAD simulation
Linear-mode I-V Model Parameter Extraction and Modeling Diamond FET model Linear-mode I-V Model Parameter Extraction and Modeling Basic assumption
Diamond FET model COMSOL VS 38.73 C/W 33.81 C/W C-H Diamond FET
I-V Model Verification Diamond FET model I-V Model Verification Saturated-mode I-V model LG = 0.5 m, WG = 2* 500 m Modeling Flowchart
Small signal S-Parameter Extraction and Verification Diamond FET model Small signal S-Parameter Extraction and Verification
Diamond FET model Large-signal Modeling and Verification 1 GHz Power Sweep Electrothermal large signal model topology Yu Fu, Ruimin Xu, …, Yuehang Xu*, IEEE Access, 2019 2 GHz Power Sweep
Outline Background Theory of QPZD model QPZD Diamond FET model Summary
Summary QPZD model is validated by GaN HEMT transistors and further validated by a X-band GaN High power amplifier QPZD statistical model is used for MMIC yield analysis QPZD model is used for microwave diamond FETs
Acknowledgement