Simplifying Surds (2) a) 3× 3 f) b) 3 3 × 3 g)

Slides:



Advertisements
Similar presentations
Unit 5 : Indices and Surds
Advertisements

Rationalise Surds.
Surds Learning objectives Different kind of numbers
Completing the square Solving quadratic equations 1. Express the followings in completed square form and hence solve the equations x 2 + 4x – 12 = 0 (x.
Expanding Brackets with Surds and Fractions
People Fractions. Problem 1 of 20 Answer 1 = 10 Problem 2 of 20 Answer 2 = 5.
Algebra I Chapter 10 Review
Simplifying Surds Slideshow 6, Mr Richard Sasaki, Room 307.
Topic 1Topic 2Topic 3Topic 4Topic
Simplifying Algebraic Expressions Show 5 apples and 3 bananas Write the algebraic expression.
28/07/10 SURDS What is a surd? Manipulating and simplifying surds.
Type your question here. Type Answer Type your question here. Type Answer.
Notes Over 2.8 Rules for Dividing Negative Numbers. ( Same as Multiplying ) If there is an even number of negative numbers, then the answer is Positive.
Rationalizing the Denominator Presented by Kathryn Maloney Binomial Denominators.
Integrated Mathematics
Background Knowledge By the end of this lesson you will be able to explain/calculate the following: 1.Surds 2.Radicals.
Warm up Notes Preliminary Activity Activity For Fun Surds.
Exponent Quiz Review. Evaluate the expression 4 2  Answer: 16.
Simplifying the Surds Surds: Irrational.
Grade 6 Surds Simplifying Surds.
Exponents Quiz Review. 1.What is the reciprocal of 3 −3 ? 1 = 1 for reciprocal, flip it! 27 =
EXAMPLE 1 List possible rational zeros List the possible rational zeros of f using the rational zero theorem. a. f (x) = x 3 + 2x 2 – 11x + 12 Factors.
1 Simplifying Indices Change to common base Change to common power Think of how to make it common power Combine the base and simplify Ensure that common.
Category Category Category Category Category
Geometry 7-R Unit 7 Area Review Problems
Binomial Expansion and Surds. Part 1
Indices and Surds.
Simplifying Expressions
Aim: Full House Grid: 9 Grid Play: Calculate answer & cross it off
Learning outcomes Today, we are learning to… Add a
Using the surds √2 √8 √10 √160 √320 and the operations ÷ and ×
Review Problems Algebra 1 11-R.
Conjugates Surds By Mr Porter.
Slideshow 10, Mr Richard Sasaki, Mathematics
Surds: Multiplying 5 × 3 6 × 3 24 × 3 Silent Teacher
סדר דין פלילי – חקיקה ומהות ההליך הפלילי
Expanding and Simplifying Algebraic Expressions
Simplifying Rational Expressions
Surd Sums.
Must Do (8/29) – (-7) 8 – 12 (-7) + (-4)

Surds.

Roots of numbers which cannot be expressed as whole numbers are called SURDS National 5 Maths Surds.
Perform the indicated operations and simplify: {image} Select the correct answer
Fractions VI Adding Like Denominators
Simplify the expression: {image} Select the correct answer.
10/10/ Bell Work Write and answer the following questions.
Work out (if you can, simplify your answer) 8 6.
Millburn Academy Maths department National 5 Surds 1.
mr-mathematics.com Recapping: Algebraic notation and square numbers.
Choose 9 surds to put in your bingo grid
Surds Roots that are irrational are called surds. Law 1:
SURDS What is a surd? Manipulating and simplifying surds.
= x 2 = = 20 4 x 5 = = 16 4 x 4 = = 18 6 x 3 = = 12 2 x 6 = 12.
You must show all steps of your working out.
Surds and Brackets.
Aim: Full House Grid: 9 Grid Play: Calculate answer & cross it off
Surds 2 Multiplying & Dividing
Question 1.
× 14 ? ? Card 1 Card 2 Surds Treasure Hunt Surds Treasure Hunt
The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes.
Let’s see why the answers (1) and (2) are the same
Factor Trees and Surds L.O.
Surds Multiplication And DOTs
Indices Practice questions
What’s the same and what’s different?
Fractions VII Subtracting Like Denominators
Simplifying Surds a)
‘When simplifying surds, always look for a factor that is a ….’
Presentation transcript:

Simplifying Surds (2) a) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3− 3 3+ 3 c) 3 3 × 2 h) 3− 3 3− 3 d) 3(3+ 3 ) i) 2 3 −3 3+ 3 e) 3 3 (3+ 3 ) j) 3−2 3 3+2 3 FIRST ANSWER ALL ANSWERS

Simplifying Surds (2) a) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3− 3 3+ 3 c) 3 3 × 2 h) 3− 3 3− 3 d) 3(3+ 3 ) i) 2 3 −3 3+ 3 e) 3 3 (3+ 3 ) j) 3−2 3 3+2 3 3 3 NEXT ANSWER ALL ANSWERS

Simplifying Surds (2) a) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3− 3 3+ 3 c) 3 3 × 2 h) 3− 3 3− 3 d) 3(3+ 3 ) i) 2 3 −3 3+ 3 e) 3 3 (3+ 3 ) j) 3−2 3 3+2 3 3 3 9 NEXT ANSWER ALL ANSWERS

Simplifying Surds (2) a) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3− 3 3+ 3 c) 3 3 × 2 h) 3− 3 3− 3 d) 3(3+ 3 ) i) 2 3 −3 3+ 3 e) 3 3 (3+ 3 ) j) 3−2 3 3+2 3 3 3 9 3 6 NEXT ANSWER ALL ANSWERS

Simplifying Surds (2) a) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3− 3 3+ 3 c) 3 3 × 2 h) 3− 3 3− 3 d) 3(3+ 3 ) i) 2 3 −3 3+ 3 e) 3 3 (3+ 3 ) j) 3−2 3 3+2 3 3 3 9 3 6 9+3 3 NEXT ANSWER ALL ANSWERS

Simplifying Surds (2) a) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3− 3 3+ 3 c) 3 3 × 2 h) 3− 3 3− 3 d) 3(3+ 3 ) i) 2 3 −3 3+ 3 e) 3 3 (3+ 3 ) j) 3−2 3 3+2 3 3 3 9 3 6 9+3 3 9 3 +9 NEXT ANSWER ALL ANSWERS

Simplifying Surds (2) a) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3− 3 3+ 3 c) 3 3 × 2 h) 3− 3 3− 3 d) 3(3+ 3 ) i) 2 3 −3 3+ 3 e) 3 3 (3+ 3 ) j) 3−2 3 3+2 3 3 3 6 3 +12 9 3 6 9+3 3 9 3 +9 NEXT ANSWER ALL ANSWERS

Simplifying Surds (2) a) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3− 3 3+ 3 c) 3 3 × 2 h) 3− 3 3− 3 d) 3(3+ 3 ) i) 2 3 −3 3+ 3 e) 3 3 (3+ 3 ) j) 3−2 3 3+2 3 3 3 6 3 +12 9 6 3 6 9+3 3 9 3 +9 NEXT ANSWER ALL ANSWERS

Simplifying Surds (2) a) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3− 3 3+ 3 c) 3 3 × 2 h) 3− 3 3− 3 d) 3(3+ 3 ) i) 2 3 −3 3+ 3 e) 3 3 (3+ 3 ) j) 3−2 3 3+2 3 3 3 6 3 +12 9 6 3 6 12 − 6 3 9+3 3 9 3 +9 NEXT ANSWER ALL ANSWERS

Simplifying Surds (2) a) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3− 3 3+ 3 c) 3 3 × 2 h) 3− 3 3− 3 d) 3(3+ 3 ) i) 2 3 −3 3+ 3 e) 3 3 (3+ 3 ) j) 3−2 3 3+2 3 3 3 6 3 +12 9 6 3 6 12 − 6 3 9+3 3 3 3 −3 9 3 +9 NEXT ANSWER ALL ANSWERS

Simplifying Surds (2) a) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3× 3 f) 3 3+ 3 +3 3+ 3 b) 3 3 × 3 g) 3− 3 3+ 3 c) 3 3 × 2 h) 3− 3 3− 3 d) 3(3+ 3 ) i) 2 3 −3 3+ 3 e) 3 3 (3+ 3 ) j) 3−2 3 3+2 3 3 3 6 3 +12 9 6 3 6 12 − 6 3 9+3 3 3 3 −3 9 3 +9 −3