Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring

Slides:



Advertisements
Similar presentations
Initial Calculations of Intrabeam Scattering life times in ELIC lattices by Betacool code Chaivat Tengsirivattana CASA, Jefferson Lab University of Virginia.
Advertisements

Luminosity Prospects of LHeC, a Lepton Proton Collider in the LHC Tunnel DESY Colloquium May F. Willeke, DESY.
Kevin Jordan Beam Diagnostics Collaboration Meeting 3/18/15 MEIC Design Overview.
Page 1 Review 09/2010 Overview of MEIC Electron Collider Ring Yuhong Zhang.
IR Optics and Nonlinear Beam Dynamics Fanglei Lin for MEIC study group at JLab 2 nd Mini-workshop on MEIC IR Design, November 2, 2012.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
Synchronization Issues in MEIC Andrew Hutton, Slava Derbenev and Yuhong Zhang MEIC Ion Complex Design Mini-Workshop Jan. 27 & 28, 2011.
Progress on Design Studies of a High-Luminosity Ring-Ring Electron-Ion Collider at CEBAF and Its Low to Medium Energy Staging Approach* S. A. Bogacz, P.
Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
100km CEPC parameter and lattice design
P. Chevtsov for the ELIC Design Team
Large Booster and Collider Ring
Beam-beam Effects in Hadron Colliders
Space Charge Effect Simulation Using DA Based FMM and Electron Cooling Simulation for JLab’s MEIC Project.
A brief Introduction of eRHIC
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
CEPC partial double ring scheme and crab-waist parameters
LHC (SSC) Byung Yunn CASA.
Collider Ring Optics & Related Issues
JLEIC Collaboration Meeting Spring 2017
Accelerator and Interaction Region
Lattice design for double ring scheme of CEPC main ring
Simulation check of main parameters (wd )
Low Energy Electron-Ion Collision
Introduction to the Accelerator and Design
Polarized Positrons in JLEIC
JLEIC Reaching 140 GeV CM Energy: Concept and Luminosity Estimate
Update on Alternative Design of jleic ion injector Complex B
RHIC Magnets for JLEIC Yuhong Zhang May 11, 2018.
MEIC New Baseline: Part 10
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Ion bunch formation options for 400GeV JLEIC
Parameters Changed in New MEIC Design
JLEIC 200 GeV Ion Injector Chain and Bunch Formation
Update on MEIC Activities at ANL
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
MEIC New Baseline: Luminosity Performance and Upgrade Path
Feasibility of Recuperation of Magnets in Decommissioned Storage Rings
Deuteron and Small Aperture
The Feasibility of Using RHIC Magnets for MEIC and Cost Impact
The MEIC electron ring as the large ion booster
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Status and plans for crab crossing studies at JLEIC
Alternative Ion Injector Design
JLEIC Main Parameters with Strong Electron Cooling
Non-pairwise Collision
Update on JLEIC Electron Ring Design
MEIC New Baseline: Part 7
Conventional Synchronization Schemes
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
JLEIC Collider Rings’ Geometry Options (II)
Progress Update on the Electron Polarization Study in the JLEIC
MEIC New Baseline: Performance and Accelerator R&D
MEIC Alternative Design Part V
Possibility of MEIC Arc Cell Using PEP-II Dipole
More on MEIC Beam Synchronization
HE-JLEIC: Do We Have a Baseline?
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
MEIC Alternative Design Part III
RF Parameters for New 2.2 km MEIC Design
MEIC beam path change with e-ring bypass lines
SC Magnets with Small Apertures for JLEIC*
Summary and Plan for Electron Polarization Study in the JLEIC
Booster to Ion Ring Transfer Line
Beam Synchronization in MEIC: The Problem, Scale and Prospect
HE-JLEIC Luminosity Estimate
Presentation transcript:

Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring New MEIC Design Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring Nov. 6, 2014

MEIC Design Goals Y. Zhang, IMP Seminar Energy (bridging the gap of 12 GeV CEBAF & HERA/LHeC) Full coverage of s from a few 100 to a few 1000 GeV2 Electrons 3-12 GeV, protons 20-100 GeV, ions 12-40 GeV/u Ion species Polarized light ions: p, d, 3He, and possibly Li, and polarized heavier ions Un-polarized light to heavy ions up to A above 200 (Au, Pb) Up to 2 detectors Luminosity Greater than 1033 cm-2s-1 per interaction point over a broad CM region Maximum luminosity should optimally be around √s=45 GeV Polarization At IP: longitudinal for both beams, transverse for ions only All polarizations >70% desirable Upgradeable to higher energies and luminosity 20 GeV electron, 250 GeV proton, and 100 GeV/u ion Y. Zhang, IMP Seminar

MEIC Parameters at 5x60 GeV Design Point Ring circumference m 1450 2200 Proton Electron Beam energy GeV 60 5 Collision frequency MHz 750 Current / particles per bunch A / 1010 0.5/0.416 3 / 2.5 0.37 / 0.31 Polarization % > 70 ~ 80 Energy spread 10-4 ~ 3 7.1 RMS bunch length mm 10 7.5 12 Horiz./ vert. emittance, norm. µm rad 0.35 / 0.07 54 / 11 68 / 13.6 Horizontal and vertical β* cm 10 / 2 (4 / 0.8) 12.7 / 2.53 (5 / 1) Vertical beam-beam tune shift 0.014 0.03 0.017 Laslett tune shift 0.06 Very small Distance from IP to 1st FF quad 7 (4.5) 3.5 Hour-glass effect 0.96 (0.84) 0.94 (0.79) Luminosity per IP, 1033 cm-2s-1 5.4 (11.7) 3.1 (6.5) Numbers in blue font are for a high luminosity detector Slide 3 3

RHIC+(new)High-Field Magnets for MEIC (2.2 km) Magnet type RHIC High field SC Maximum kinetic energy GeV 100 (186) 100 Dipole length m 9.45 2.1 Dipole maximum field T 3.4 (4.45) 2.15 6 Dipole bending radius / angle m / deg 139 / 3.9 155 / 3.5° 55.6 / 2.2° BDL split 100% 62% 38% Figure-8 crossing angle deg 100° 81.7° FODO cells / dipoles in each arc 72 / 36 23 / 46 FODO cell length / packing factor 29.6 / 0.638 31.6 / 0.73 Arc length / radius m / m 1065 / 218 731 / 160 Straight length 366 371 Ring circumference 2860 2205 RHIC magnet 9.45 m, up to 2.15 T High field magnet 2.1 m, up to 6 T

RHIC+(new) RHIC-Like Magnets for MEIC (2.2 km) Magnet type RHIC RHIC-like Maximum kinetic energy GeV 100 (186) 100 Dipole length m 9.45 4.2 Dipole maximum field T 3.4 (4.45) 2.15 4.45 Dipole bending radius / angle m / deg 139 / 3.9 155 / 3.5° 75 / 3.2° BDL split 100% 52% 48% Figure-8 crossing angle deg 100° 81.7° FODO cells / dipoles in each arc 72 / 36 19.5 / 39 FODO cell length / packing factor 29.6 / 0.638 37.4 / 0.73 Arc length / radius m / m 1065 / 218 729 / 160 Straight length 366 370 Ring circumference 2860 2199 RHIC magnet 9.45 m, up to 2.15 T New RHIC-like magnet 4.2 m, up to 4.45

RHIC+(new) RHIC-Like Magnets: Upgrade to 250 GeV Magnet type RHIC RHIC-like High-fld Maximum kinetic energy GeV 100 250 Dipole length m 9.45 4.2 Dipole maximum field T 2.15 4.45 8.3 Dipole bending radius / angle m / deg 155 / 3.5° 75 / 3.2° 100 / 5.4° 187 / 1.3° BDL split 52% 48% 81% 19% Figure-8 crossing angle deg 81.7° FODO cells / dipoles in each arc 19.5 / 39 FODO cell length / packing factor 37.4 / 0.73 Arc length / radius m / m 729 / 160 Straight length 370 Ring circumference 2199 RHIC magnet 9.45 m, up to 2.15 T New RHIC-like magnet 4.2 m, up to 4.45 T Replacing all RHIC magnets by 8.3 T high field SC magnets

RHIC+(new) RHIC-Like Magnets: Upgrade to 250 GeV Magnet type RHIC RHIC-like High-fld Maximum kinetic energy GeV 100 250 Dipole length m 9.45 4.2 Dipole maximum field T 2.15 4.45 12.1 Dipole bending radius / angle m / deg 155 / 3.5° 75 / 3.2° 187 / 2.9° 69 / 7.9° 187 / 1.3° BDL split 52% 48% 22% 59% 19% Figure-8 crossing angle deg 81.7° FODO cells / dipoles in each arc 19.5 / 39 19.5 / 19.5 FODO cell length / packing factor 37.4 / 0.73 Arc length / radius m / m 729 / 160 Straight length 370 Ring circumference 2199 Replacing only half RHIC magnets (one of two in a cell) by 12 T high field SC magnets RHIC magnet 9.45 m, up to 2.15 T New RHIC-like magnet 4.2 m, up to 4.45 T