Introduction to Econometrics, 5th edition

Slides:



Advertisements
Similar presentations
1 Although they are biased in finite samples if Part (2) of Assumption C.7 is violated, OLS estimators are consistent if Part (1) is valid. We will demonstrate.
Advertisements

Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: consequences of autocorrelation Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: model b: properties of the regression coefficients Original citation:
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: introduction to maximum likelihood estimation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: adaptive expectations Original citation: Dougherty, C. (2012) EC220.
1 XX X1X1 XX X Random variable X with unknown population mean  X function of X probability density Sample of n observations X 1, X 2,..., X n : potential.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: asymptotic properties of estimators: plims and consistency Original.
1 THE NORMAL DISTRIBUTION In the analysis so far, we have discussed the mean and the variance of a distribution of a random variable, but we have not said.
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
EC220 - Introduction to econometrics (chapter 7)
1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you.
Random effects estimation RANDOM EFFECTS REGRESSIONS When the observed variables of interest are constant for each individual, a fixed effects regression.
MEASUREMENT ERROR 1 In this sequence we will investigate the consequences of measurement errors in the variables in a regression model. To keep the analysis.
ASYMPTOTIC PROPERTIES OF ESTIMATORS: PLIMS AND CONSISTENCY
1 ASSUMPTIONS FOR MODEL C: REGRESSIONS WITH TIME SERIES DATA Assumptions C.1, C.3, C.4, C.5, and C.8, and the consequences of their violations are the.
EC220 - Introduction to econometrics (chapter 2)
EC220 - Introduction to econometrics (chapter 9)
EXPECTED VALUE OF A RANDOM VARIABLE 1 The expected value of a random variable, also known as its population mean, is the weighted average of its possible.
1 We will now consider the distributional properties of OLS estimators in models with a lagged dependent variable. We will do so for the simplest such.
1 A MONTE CARLO EXPERIMENT In the previous slideshow, we saw that the error term is responsible for the variations of b 2 around its fixed component 
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: prediction Original citation: Dougherty, C. (2012) EC220 - Introduction.
1 THE CENTRAL LIMIT THEOREM If a random variable X has a normal distribution, its sample mean X will also have a normal distribution. This fact is useful.
Cross-sectional:Observations on individuals, households, enterprises, countries, etc at one moment in time (Chapters 1–10, Models A and B). 1 During this.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
DERIVING LINEAR REGRESSION COEFFICIENTS
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
1 In a second variation, we shall consider the model shown above. x is the rate of growth of productivity, assumed to be exogenous. w is now hypothesized.
1 This sequence shows why OLS is likely to yield inconsistent estimates in models composed of two or more simultaneous relationships. SIMULTANEOUS EQUATIONS.
1 PREDICTION In the previous sequence, we saw how to predict the price of a good or asset given the composition of its characteristics. In this sequence,
EC220 - Introduction to econometrics (review chapter)
1 UNBIASEDNESS AND EFFICIENCY Much of the analysis in this course will be concerned with three properties of estimators: unbiasedness, efficiency, and.
FIXED EFFECTS REGRESSIONS: WITHIN-GROUPS METHOD The two main approaches to the fitting of models using panel data are known, for reasons that will be explained.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: measurement error Original citation: Dougherty, C. (2012) EC220 - Introduction.
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
CONSEQUENCES OF AUTOCORRELATION
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
CONFLICTS BETWEEN UNBIASEDNESS AND MINIMUM VARIANCE
ASYMPTOTIC AND FINITE-SAMPLE DISTRIBUTIONS OF THE IV ESTIMATOR
EC220 - Introduction to econometrics (chapter 8)
MULTIPLE RESTRICTIONS AND ZERO RESTRICTIONS
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
Simple regression model: Y =  1 +  2 X + u 1 We have seen that the regression coefficients b 1 and b 2 are random variables. They provide point estimates.
A.1The model is linear in parameters and correctly specified. PROPERTIES OF THE MULTIPLE REGRESSION COEFFICIENTS 1 Moving from the simple to the multiple.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
1 We will now look at the properties of the OLS regression estimators with the assumptions of Model B. We will do this within the context of the simple.
1 COVARIANCE, COVARIANCE AND VARIANCE RULES, AND CORRELATION Covariance The covariance of two random variables X and Y, often written  XY, is defined.
1 Y SIMPLE REGRESSION MODEL Suppose that a variable Y is a linear function of another variable X, with unknown parameters  1 and  2 that we wish to estimate.
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
1 ASYMPTOTIC PROPERTIES OF ESTIMATORS: THE USE OF SIMULATION In practice we deal with finite samples, not infinite ones. So why should we be interested.
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
INSTRUMENTAL VARIABLES 1 Suppose that you have a model in which Y is determined by X but you have reason to believe that Assumption B.7 is invalid and.
1 INSTRUMENTAL VARIABLE ESTIMATION OF SIMULTANEOUS EQUATIONS In the previous sequence it was asserted that the reduced form equations have two important.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
FOOTNOTE: THE COCHRANE–ORCUTT ITERATIVE PROCESS 1 We saw in the previous sequence that AR(1) autocorrelation could be eliminated by a simple manipulation.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

Introduction to Econometrics, 5th edition Type author name/s here Dougherty Introduction to Econometrics, 5th edition Chapter heading Chapter 11: Models Using Time Series Data © Christopher Dougherty, 2016. All rights reserved.

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES Although they are biased in finite samples if Part (2) of Assumption C.7 is violated, OLS estimators are consistent if Part (1) is valid. We will demonstrate this for the univariate process shown, the simplest of its type. A necessary condition is |b2| < 1. 1

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES Provided that this condition is satisfied, the process has mean zero. To demonstrate this, first express Yt as a linear combination of current and lagged values of ut. The weights decline because | b2 | < 1 and tend to zero. 2

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES We then take expectations and all the terms on the right side are zero. 3

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES The process has variance su2 / (1 – b22). We will take this on trust for the time being. It is demonstrated, with clarifications concerning what is meant by the mean and variance of a time series process, at the beginning of Chapter 13. 4

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES The OLS estimator of b2 has been decomposed in the usual way. 5

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES The OLS estimator is consistent if the plim of the error term is zero. 6

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES if A and B have probability limits and plim B is not 0. Since the error term is a ratio, we would like to make use of the plim quotient rule. However, we can do this only if the numerator and denominator have plims, and if the plim of the denominator is not zero. 7

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES if A and B have probability limits and plim B is not 0. As they stand, the numerator and the denominator of the error term do not converge to limits as the same size becomes large. 8

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES The first step is to divide both by the number of observations, in this case T – 1. (We cannot use the first observation because Yt–1 is not defined.) 9

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES Before we go any further, it is helpful to establish the relationship shown. 10

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES We will use this result rearranged as shown. 11

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES We know that the plim of the original expression is cov(X,Y), provided that certain assumptions are valid. 12

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES Hence we obtain the plim of the rearranged expression. 13

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES By considering the special case where Y = X, we also obtain this result. 14

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES We now apply these general results to the present analysis. cov(Yt–1, ut) is zero because ut is generated randomly after Yt–1 has been determined. We have shown that the mean of the process for Y is zero, as is the population mean of the disturbance term, by assumption. 15

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES The variance is as shown. (We are taking this on trust. For a proof and a discussion of what is meant by the mean and variance of a process, see the first section of Chapter 13.) 16

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES if A and B have probability limits and plim B is not 0. We have demonstrated that both the numerator and the denominator of the error term have plims, and hence that we are entitled to use the plim quotient rule. The plim of the denominator is not zero because variances are positive. 17

CONSISTENCY OF OLS ESTIMATOR FOR A UNIVARIATE TIME SERIES Thus the plim of the error term is zero. Hence the OLS estimator is consistent. 18

Copyright Christopher Dougherty 2016. These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 11.5 of C. Dougherty, Introduction to Econometrics, fifth edition 2016, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre http://www.oxfordtextbooks.co.uk/orc/dougherty5e/. Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx or the University of London International Programmes distance learning course 20 Elements of Econometrics www.londoninternational.ac.uk/lse. 2016.05.22