P. Gubler and M. Oka, Prog. Theor. Phys. 124, 995 (2010).

Slides:



Advertisements
Similar presentations
Su Houng Lee 1. Mesons with one heavy quark 2. Baryons with one heavy quark 3. Quarkonium Arguments based on two point function  can be generalized to.
Advertisements

Ágnes MócsyQWG Meeting BNL June Quarkonia above Deconfinement and Potential Models Quarkonia above Deconfinement and Potential Models Ágnes.
Koichi Hattori, RBRC Hadron and Hadron Interactions in QCD Mar. 9th, 2015 Charmonium spectroscopy in strong magnetic fields by QCD sum rules.
Thermal 2007T.Umeda (Tsukuba)1 Constant mode in charmonium correlation functions Takashi Umeda This is based on the Phys. Rev. D (2007) Thermal.
Η c and χ c at finite temperature from QCD Sum Rules C. A. Dominguez and Yingwen Zhang University of Cape Town, South Africa M. Loewe Pontificia Universidad.
Lattice QCD at finite temperature Péter Petreczky Physics Department and RIKEN-BNL Winter Workshop on Nuclear Dynamics, March 12-18, 2006 Bulk thermodynamics.
Quarkonia correlators and spectral functions Péter Petreczky Physics Department and RIKEN-BNL SQM 2006, March 26-31, 2006 Meson spectral functions and.
Stability of Quarkonia in a Hot Medium Cheuk-Yin Wong Oak Ridge National Laboratory & University of Tennessee SQM Workshop, UCLA, March 26-30, 2006 Introduction.
Operator product expansion and sum rule approach to the unitary Fermi gas Schladming Winter School “Intersection Between QCD and Condensed Matter”
XI th International Conference on Quark Confinement and the Hadron Petersburg, Russia Philipp Gubler (RIKEN, Nishina Center) Collaborator:
QCD sum rules in a Bayesian approach YIPQS workshop on “Exotics from Heavy Ion Collisions” YITP Philipp Gubler (TokyoTech) Collaborator: Makoto.
MEM analysis of the QCD sum rule and its Application to the Nucleon spectrum Tokyo Institute of Technology Keisuke Ohtani Collaborators : Philipp Gubler,
P. Gubler, K. Morita, and M. Oka, Phys. Rev. Lett. 107, (2011) K. Suzuki, P. Gubler, K. Morita, and M. Oka, arxiv: [hep-th]
1 Dilepton production in heavy ion collision Su Houng Lee Will talk about heavy quark sector Thanks to Dr. Kenji Morita(YITP ), Dr. Taesoo Song(Texas A&M)
Komaba seminarT.Umeda (Tsukuba)1 A study of charmonium dissociation temperatures using a finite volume technique in the lattice QCD T. Umeda and H. Ohno.
Twist-3 distribution amplitudes of scalar mesons from QCD sum rules Y.M Wang In collaboration with C.D Lu and H. Zou Institute of High Energy Physics,
Hot quarkonium spectral functions from QCD sum rules and MEM Heavy quarks and quarkonia in thermal ECT*, Villazzano, Italy Philipp Gubler.
Heavy quarks in finite temperature lattice QCD Péter Petreczky Physics Department and RIKEN-BNL Exploring QCD : Deconfinement etc, Newton Institute, Cambridge,
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL SQM 2007, June 24-29, 2007 Thermodynamics of 2+1 flavor QCD for nearly.
Heavy Flavor Productions & Hot/Dense Quark Matter 1 Lattice calculations on Heavy flavor ~ Open and Hidden charm states above Tc ~ Takashi Umeda (BNL)
Nuclear Symmetry Energy from QCD Sum Rule The 5 th APFB Problem in Physics, August 25, 2011 Kie Sang JEONG Su Houng LEE (Theoretical Nuclear and Hadron.
RIKEN Lunch Seminar1 Study of Charmonia at finite temperature in quenched lattice QCD Takashi Umeda (BNL) RIKEN Lunch Seminar, Sept. 15th 2005.
Ágnes Mócsy FIAS & ITP, Frankfurt Quarkonia Correlators above Deconfinement * Calculating correlators * Why interested in quarkonia correlators * Charm.
Modification of nucleon spectral function in the nuclear medium from QCD sum rules Collaborators: Philipp Gubler(ECT*), Makoto Oka Tokyo Institute of Technology.
The phi meson in nuclear matter - recent result from theory - Talk at ECT* Workshop “New perspectives on Photons and Dileptons in Ultrarelativistic Heavy-Ion.
June 13, Hard Probes 2006 Masayuki ASAKAWA Department of Physics, Osaka University Quarkonium States at Finite Temperature An Introduction to Maximum.
Spectral functions of mesons at finite temperature/density Talk at the 31 st Reimei workshop on hadron physics in extreme conditions at J-PARC, Tokai,
Hard Probes Quarkonium states at finite temperature Takashi Umeda (BNL) Hard Probes 2006 June 9-16, 2006, Asilomar Conference Grounds Pacific Grove,
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
TOWARDS EXOTIC HIDDEN-CHARM PENTAQUARKS IN QCD SUM RULE 陈华星 北京航空航天大学 合作者:陈伟 刘翔 T. G. STEELE 朱世琳 Weihai August 17, 2015.
1 Heavy quark system near Tc Su Houng Lee In collaboration with Kenji Morita Also, thanks to group members: Present: T. Song, K.I. Kim, W.S. Park, H. Park,
Quarkonia spectral functions at zero and finite temperature Péter Petreczky Nuclear Theory Group and RIKEN-BNL Brookhaven National Laboratory Based on.
ANALYSES OF D s * DK (B s * BK) VERTICES J. Y. Süngü, Collaborators: K. Azizi * and H. Sundu 2 nd International Conference on Particle Physics in Memoriam.
1 Properties of Quarkonia at T c Su Houng Lee In collaboration with Kenji Morita.
Quarkonium at finite Temperature from QCD Sum Rules and the Maximum Entropy Method Seminar at the Komaba Nuclear Theory Tokyo University
Charmonia at finite temperature: an approach based on QCD sum rules and the maximum entropy method “Future Prospects of Hadron Physics at J-PARC and Large.
ATHIC 2008, Tsukuba Kenji Morita, Yonsei University Charmonium dissociation temperatures from QCD sum rules Kenji Morita Institute of Physics and Applied.
Recent results from QCD sum rule analyses based on the maximum entropy method International Symposium on Chiral Symmetry in Hadrons and
Exact vector channel sum rules at finite temperature Talk at the ECT* workshop “Advances in transport and response properties of strongly interacting systems”
Nature of f 0 (1370), f 0 (1500) and f 0 (1710) within the eLSM Stanislaus Janowski in collaboration with F. Giacosa, D. Parganlija and D. H. Rischke Stanislaus.
Vector and axial-vector mesons in nuclear matter – recent results
Spatial charmonium correlators and spectral functions
Heavy quark potentials and spectral functions Péter Petreczky
Lattice QCD at finite temperature Péter Petreczky
Thermal modification of bottomonium spectral functions from QCD sum rules with the maximum entropy method Kei Suzuki (Tokyo Institute of Technology)
Quarkonia at finite temperature: lattice results Peter Petreczky
Modifications of meson spectral functions in nuclear matter
QCD condensates and phi meson spectral moments in nuclear matter
Mesons in medium and QCD sum rule with dim 6 operators
Scalar Meson σ(600) in the QCD Sum Rule
Strangeness and charm in hadrons and dense matter, YITP, May 15, 2017
The φ meson in nuclear matter and the strangeness content of the nucleon Philipp Gubler, JAEA P. Gubler and K. Ohtani, Phys. Rev. D 90, (2014).
Quarkonium correlators at finite temperature
R.R. Silva, M.E. Bracco, S.H. Lee, M. Nielsen
Takashi Umeda This talk is based on the hep-lat/
A Bayesian Approach to QCD Sum Rules
Overview of Potential models at finite temperature Péter Petreczky
有限密度・ 温度におけるハドロンの性質の変化
The Operator Product Expansion Beyond Perturbation Theory in QCD
Exact vector channel sum rules at finite temperature
Towards Understanding the In-medium φ Meson with Finite Momentum
Quarkonium states at finite temperature
Hot wave function from lattice QCD
QCD sum rules for quarkonium at T>0
Quarkonia at finite T from QCD sum rules and MEM
The phi meson at finite density from a QCD sum rules + MEM approach
QCD和則とMEMを用いた有限密度中のvector mesonの研究の現状と最近の発展
Lattice study of charmonia in Hot QCD
Theory on Hadrons in nuclear medium
Presentation transcript:

Charmonium spectral functions at finite temperature from a Bayesian analysis of QCD sum rules P. Gubler and M. Oka, Prog. Theor. Phys. 124, 995 (2010). P. Gubler, K. Morita and M. Oka, in preparation. Dense Strange Matter and Compressed Baryonic Matter @ YITP, Kyoto University, Japan 20.4.2011 Philipp Gubler (TokyoTech) Collaborators: Makoto Oka (TokyoTech), Kenji Morita (YITP)

Contents QCD Sum Rules and the Maximum Entropy Method Results of the analysis of charmonia at finite temperature Conclusions and Outlook

QCD sum rules M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147, 385 (1979); B147, 448 (1979). In this method the properties of the two point correlation function is fully exploited: is calculated “perturbatively”, using OPE spectral function of the operator χ After the Borel transformation:

The basic problem to be solved given ? “Kernel” (but only incomplete and with error) This is an ill-posed problem. But, one may have additional information on ρ(ω), which can help to constrain the problem: - Positivity: - Asymptotic values:

The usual approach s ρ(s) The spectral function is usually assumed to be describable by a “pole + continuum” form (ground state + excited states): This very crude ansatz often works surprisingly well, but… This ansatz may not always be appropriate. The dependence of the physical results on sth is often quite large.

The Maximum Entropy Method → Bayes’ Theorem likelihood function prior probability (Shannon-Jaynes entropy) Corresponds to ordinary χ2-fitting. “default model” M. Jarrel and J.E. Gubernatis, Phys. Rep. 269, 133 (1996). M.Asakawa, T.Hatsuda and Y.Nakahara, Prog. Part. Nucl. Phys. 46, 459 (2001).

First applications in the light quark sector ρ-meson channel Nucleon channel Experiment: mρ= 0.77 GeV Fρ= 0.141 GeV Experiment: mN= 0.94 GeV PG and M. Oka, Prog. Theor. Phys. 124, 995 (2010). K. Ohtani, PG and M. Oka, in preparation.

Application to charmonium at finite temperature - Prediction of “J/ψ Suppression by Quark-Gluon Plasma Formation” T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986). … - During the last 10 years, a picture has emerged from studies using lattice QCD (and MEM), where J/ψ survives above TC. (schematic) M. Asakawa and T. Hatsuda, Phys. Rev. Lett. 92 012001 (2004). S. Datta et al, Phys. Rev. D69, 094507 (2004). T. Umeda et al, Eur. Phys. J. C39S1, 9 (2005). … taken from H. Satz, Nucl.Part.Phys. 32, 25 (2006).

The charmonium sum rules at T=0 The sum rule: perturbative term including αs correction Non-perturbative corrections including condensates up to dim 6 Developed and analyzed in: M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147, 385 (1979); B147, 448 (1979). L.J. Reinders, H.R. Rubinstein and S. Yazaki, Nucl. Phys. B 186, 109 (1981). R.A. Bertlmann, Nucl. Phys. B 204, 387 (1982). J. Marrow, J. Parker and G. Shaw, Z. Phys. C 37, 103 (1987).

MEM Analysis at T=0 mJ/ψ=3.06 GeV mηc=3.02 GeV Here, the following values were used: Experiment: mJ/ψ= 3.10 GeV mηc= 2.98 GeV

The charmonium sum rules at finite T The application of QCD sum rules has been developed in: T.Hatsuda, Y.Koike and S.H. Lee, Nucl. Phys. B 394, 221 (1993). depend on T A non-scalar twist-2 gluon condensates appears due to the non-existence of Lorentz invariance at finite temperature: four-velocity of the medium

The T-dependence of the condensates The energy-momentum tensor is considered: After matching the trace part and the traceless part, one gets: obtained from lattice QCD These values are obtained from quenched lattice calculations: G. Boyd et al, Nucl. Phys. B 469, 419 (1996). O. Kaczmarek et al, Phys. Rev. D 70, 074505 (2004). taken from: K. Morita and S.H. Lee, Phys. Rev. D82, 054008 (2010). K. Morita and S.H. Lee, Phys. Rev. Lett. 100, 022301 (2008). K. Morita and S.H. Lee, Phys. Rev. C 77, 064904 (2008).

The charmonium spectral function at finite T Melting Melting negative shift of ~50 MeV, consistent with the analysis of Morita and Lee. negative shift of ~40 MeV, consistent with the analysis of Morita and Lee. Both J/ψ and ηc have melted completely.

Conclusions We have shown that MEM can be applied to QCD sum rules The “pole + continuum” ansatz is not a necessity We could observe the melting of the S-wave charmonia using finite temperature QCD sum rules and MEM Both ηc and J/ψ seem to melt between T ~ 1.0 TC and T ~ 1.1 TC,, which is below the values obtained in lattice QCD

Outlook Analysis of P-wave states (χc0, χc1) Bottomium Including higher orders (αs, twist) Extending the method to investigations of other particles (D, …)