Getting to the right site: Helping the sperm: At ovulation, the cervical mucus increases in amount and becomes less thick, allowing easier sperm transport.

Slides:



Advertisements
Similar presentations
Sexual Reproduction and Meiosis
Advertisements

By Frank H. Osborne, Ph. D. Reproduction
The reproductive system allows the production of offspring.
By Dr Samina Anjum. Fertilization is the process by which fusion of male and female gametes occurs in the ampullary region of the uterine tube.
FERTILIZATION TO BLASTOCYST FORMATION
IF YOU MUST PRINT: Please print at least 6 slides per page Select “print” from the file menu Select “print handouts” from the pull-down menu on the lower.
Fertilization While the ovarian follicle is growing the oogonium within it undergoes maturation. Oogonium enlarges to form primary oocyte.
Anatomy & Physiology Mrs. Halkuff. Menstrual Cycle  A series of hormonal changes that help to prepare a woman’s body for pregnancy.  Menarche: First.
Fertilization Zuzana Kollarova. Fertilization The process by which the nucleus of a sperm fuses with the nucleus of an egg. Occurs in the fallopian tubes.
Meiosis Notes Cell division to form the gametes, sperm (male gamete) and egg (female gamete). Normal cells are diploid (2n): 2 copies of every gene. Gametes.
Most mammalsMost mammals ovulate an "egg“ matured into a oocyte II The secondary oocyte that is fertilized The secondary oocyte is produced along with.
Unit 9: Reproduction and Development How are humans made?
Zygote.
Copyright © 2006, Elsevier Inc. All rights reserved C HAPTER 9 Gamete Transport and Fertilization.
Sperm Transport in the Female Genital Tract of Different Animals Deposition of semen by male:  Sperm deposited in the cranial part of the vagina of cow,
1-Fertilization Definition: It is the process by which the sperm of the male & ovum of the female meet and fuse. Site: In the ampullary part of the uterine.
Gamete Formation Genetics.
MEIOSISMEIOSIS & SEXUAL REPRODUCTION MEIOSIS Genetics Lesson 4.
The Human Reproductive System. Meiosis and gamete formation take place in special reproductive organs called testes in males and ovaries in females.
Conception. Wak Wak Tree Humunculus Bad Idea Human Conception as of Today Upon ejaculation to 500 million sperm introduced into vagina.
Human Reproduction Male and Female Reproductive Anatomy.
Human Anatomy, 3rd edition Prentice Hall, © 2001 The Reproductive System Chapter 16.
The Reproductive System. Introduction Reproduction is the mechanism by which the thread of life is sustained Reproduction is the mechanism by which the.
Fertilization Passage of sperm:
1 Meiosis to Mendel Chapter 9 Read first few sections.
Development and Inheritance. Embryo The first two months following fertilization The first two months following fertilization.
Ovum and sperms: (In vitro) From this photograph, it should be clear that the heads of human sperm are less than 1/20 the diameter of human eggs.  Arrows.
Meiosis and Genetic Disorders
The Continuity of Life:
Lesson 1: Reproductive Systems. Male reproductive system.
FERTILIZATION DR SAFFIA ILYAS. Fertilization, the process by which male and female gametes fuse, occurs in the ampullary region of the uterine tube. This.
Mitosis & Meiosis. AHSGE Science Standards 6 Describe the roles of mitotic & meiotic divisions during reproduction, growth & repair of cells. 6 Describe.
FERTILIZATION By: Dr. Mujahid Khan.
Gametogenesis the formation of gametes in animals Gametogenesis although Gametogenesis in males and females is generally the same there are some general.
Gametogenesis Mona A. Elsafadi.
Meiosis Notes 4 Cell division to form the gametes, sperm (male gamete) and egg (female gamete). 4 Normal cells are diploid: 2 copies of every gene. 4 Gametes.
FERTILIZATION & IMPLANTATION By : Dr.Saaed & Dr.Sanaa.
1-Fertilization Definition: It is the process by which the sperm of the male & ovum of the female meet and fuse. Site: In the ampullary part of the uterine.
By Prof. Saeed Abuel Makarem
Health Project By Dusan & Angus. Menstrual Cycle: Definition The menstrual cycle is the monthly cycle of changes in the ovaries and the lining of the.
Fertilization in animals can be internal or external Fertilization is the fusion of egg & sperm to form a zygote (1 celled organism) What.
Fertilization.
The Female Reproductive System Chapter 48. The Ovaries Produce both the egg cells and sex hormones Made primarily of connective tissue and held in place.
SPERMATOGENESIS Definition: It is the different steps by which spermatogonia are transformed into spermatozoa in the testis. It begins at puberty (13-16.
Development.
Development.
SPERMATOGENESIS Definition: It is the different steps by which spermatogonia are transformed into spermatozoa in the testis. It begins at puberty (13-16.
Female Reproductive System and Pregnancy
Reproduction of Sex Cells
MEIOSIS.
FERTILIZATION & IMPLANTATION
MEIOSIS.
Meiosis.
Development.
Female Reproductive System
Formation of Eggs and Sperm and Fertilisation
Reproduction BIO 201: Organismal S&F Dr. Tony Serino
Organisms that reproduce Sexually are made up of two different types of cells. Somatic Cells are “body” cells and contain the normal number of chromosomes.
By:Ahmed mohamed sahwan
Oogenesis.
Gametogenesis The production of gametes in the gonads is known as gametogenesis. Spermatogenesis is the formation of sperm in the testis. Oogenesis is.
Getting to the right site:
Meiosis & Sexual Reproduction
MEIOSIS.
By Prof. Saeed Abuel Makarem & Dr. Sanaa Alshaarawi
Transportation of Ovum & Sperm and Fertilization
II. Oogenesis- the production of female gametes (egg/ovum/ova).
Presentation transcript:

Getting to the right site: Helping the sperm: At ovulation, the cervical mucus increases in amount and becomes less thick, allowing easier sperm transport. Passage of the sperm through the uterus and oviduct occurs mainly due to muscular contractions of these organs. Oocyte: The ends of the oviducts come into close contact with the ovary during ovulation. Fimbriae of oviduct ends sweep the ovulated ovum into the oviduct. Peristaltic waves of oviduct musculature bring the ovum into the ampulla of the oviduct.

The Oviduct H & E × 10 M = muscle BL = broad ligament S = serosa with vascular supporting tissue From Wheaters Functional Histology, 4 th ed., 2000.

Morphology of the Oviduct: Fallopian tube S = smooth muscle H & E × 150 E = ciliated epithelium Fallopian tube Azan × 320 From Wheaters Functional Histology, 4 th ed., 2000.

Capacitation: readying the sperm Sperms cannot fertilize oocytes when they are newly ejaculated. The process of capacitation takes 5-7 hours. Capacitated sperms are more active. Location: capacitation occurs in the uterus and oviducts and is facilitated by substances of the female genital tract. The acrosomal reaction cannot occur until capacitation has occurred.

Stage 1 of fertilization: The acrosome reaction must be completed before the sperm can fuse with the secondary oocyte Occurs when sperms come into contact with the corona radiata of the oocyte Perforations develop in the acrosome Point fusions of the sperm plasma membrane and the external acrosomal membrane occur The acrosome reaction is associated with the release of acrosome enzymes that facilitate fertilization Passage of sperm through the corona radiata depends on enzyme action: hyaluronidase released from sperm acrosome Tubal mucosal enzymes Flagella action also aids corona radiata penetration

Ovum and sperms: (In vitro) Advanced Fertility Center of Chicago The surfaces of unfertilized eggs are usually smooth in appearance. The mottled look of this egg is not normally seen, but apparently all the ova from this woman had this appearance. From this photograph, it should be clear that the heads of human sperm are less than 1/20 the diameter of human eggs. Arrows point to sperm heads

Stage 2 of fertilization: Penetration of the zona pellucida around the oocyte: Acrosomal enzymes: esterases, acrosin, and neuraminidase cause lysis of the zona pellucida Once sperm penetrates zona pellucida, the zona reaction occurs: This reaction makes the zona pellucida impermeable to other sperms. When more than one sperm manages to enter the ovum (dispermy = 2; triploidy = 3), the fetus nearly always aborts.

Stages 3 & 4 of fertilization: Fusion of plasma membranes of oocyte and sperm Head and tail of a sperm enter the cytoplasm of the oocyte, but the sperm plasma membrane remains behind. 2 nd meiotic division of oocyte is completed The secondary oocyte was previously arrested in metaphase of the 2 nd meiotic division, and now forms the mature ovum and another polar body.

Stage 5 of fertilization: Formation of male and female pronuclei: Chromosomal material of the sperm decondensates and enlarges Chromosomal material of the ovum decondensates following the completion of meiosis At this stage, the male and female pronuclei are indistinguishable. As they grow, the pronuclei replicate their DNA still 1N (haploid)- 23 chromosomes, each in chromatid pairs

The male and female pronuclei are indistinguishable from one another. The second polar body can be seen (arrow). The plasma membranes of the two pronuclei are dissolving and one diploid nucleus will remain. Fusion of the pronuclei: (in vitro) Advanced Fertility Center of Chicago

Stage 6 of fertilization: Membranes of the pronuclei break down, chromosomes condense and arrange themselves for mitotic cell division On membrane dissolution, there is 1 cell with 46 chromosomes = diploid (2N) The first cleavage follows shortly, leaving 2 cells, each with 46 chromosomes. Mitosis in the new zygote uses centrioles derived from the sperm. The oocyte has no centrioles.

Fertilization facts : Completed within 24 hours of ovulation Approximately 400 to 600 MILLION sperms are deposited at cervical opening during ejaculation. Some sperm are held up by the folds of the cervix and are gradually released into the cervical canal; this gradual release increases the chances of fertilization. Most human sperms do not survive longer than 48 hours in the female genital tract. Only about 200 sperms reach the fertilization site; most degenerate and are absorbed by the female genital tract.

The results of fertilization: Stimulates the secondary oocyte to complete meiosis. Restores the normal diploid number of chromosomes (46). Results in variation of human species as maternal and paternal chromosomes intermingle. The embryo contains only maternal mitochondria because the sperm mitochondria are dispersed into the egg cytoplasm and discarded. Determines the sex of the embryo. The sex chromosome (Y or X) carried by the successful sperm determines embryonic sex.

Twins: still 1 sperm per egg Monozygotic (monoovular): A fertilized, single egg splits into two developing zygotes at a very early stage. Identical twins; same sex. Dizygotic (polyovular): Result from the fertilization by two sperm of two separate ova that have reached maturation at the same time. Not identical twins; can be different sexes Incidence increases with age of the mother

How can fertilization go awry? Too many sperm = dispermy or triploidy Leads to spontaneous abortion in most cases. Infertility Bad timing: The sperm can only survive 48 hours within the female genital tract. In vitro studies show the ovulated egg cannot be fertilized after 24 hours.

Triploidy (in vitro) Advanced Fertility Center of Chicago There are 3 pronuclei within this one zygote. In the laboratory, such embryos are discarded. In vivo, such embryos almost always abort spontaneously.

A little more on sex determination: Not so clear-cut as X and Y: The presence of other genes, located on the X, Y and other chromosomes, influence the determination of embryonic sex. The SRY gene: Normally present on the Y chromosome Induces the sexless embryonic gonad to develop into a testis Can sometimes be present on the X chromosome, leading a genetic female (XX) to develop testis 1990: a fertilized mouse embryo with the XX configuration was injected with SRY and developed as a male both anatomically and behaviorally. (Andrew Sinclair, Center for Hormone Research, University of Melbourne)