Binomial Distributions

Slides:



Advertisements
Similar presentations
Lecture Slides Elementary Statistics Eleventh Edition
Advertisements

1 Pertemuan 06 Peluang Beberapa Sebaran Khusus Peubah Acak Diskrit Mata kuliah: A Statistik Ekonomi Tahun: 2010.
Problems Problems 4.17, 4.36, 4.40, (TRY: 4.43). 4. Random Variables A random variable is a way of recording a quantitative variable of a random experiment.
Probabilistic and Statistical Techniques
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Section 6-6 Normal as Approximation to Binomial Created by.
Chapter 4 Probability Distributions
Binomial Probability Distributions
Lecture Slides Elementary Statistics Twelfth Edition
Slide 1 Statistics Workshop Tutorial 7 Discrete Random Variables Binomial Distributions.
Binomial Probability Distributions
5-3 Binomial Probability Distributions
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Discrete Distributions Chapter 5.
Section 5-3 Binomial Probability Distribution. BINOMIAL PROBABILITY DISTRTIBUTION 1.The procedure has a fixed number of trials. 2.The trials must be independent.
5-2 Probability Distributions This section introduces the important concept of a probability distribution, which gives the probability for each value of.
1 Overview This chapter will deal with the construction of probability distributions by combining the methods of Chapter 2 with the those of Chapter 4.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Statistics 1: Elementary Statistics Section 5-4. Review of the Requirements for a Binomial Distribution Fixed number of trials All trials are independent.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 5-3 Binomial Probability Distributions.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Random Variables  Random variable a variable (typically represented by x)
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Review and Preview This chapter combines the methods of descriptive statistics presented in.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 5 Discrete Probability Distributions 5-1 Review and Preview 5-2.
Slide 1 Copyright © 2004 Pearson Education, Inc..
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Section 5-3 Binomial Probability Distributions. BINOMIAL PROBABILITY DISTRTIBUTION 1.The procedure has a fixed number of trials. 2.The trials must be.
Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 1 Binomial Experiments Section 4-3 & Section 4-4 M A R I O F. T R I O L A Copyright.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 5-2 Random Variables.
Binomial Probability Distributions
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Statistics Section 5-6 Normal as Approximation to Binomial.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Random Variables  Random variable a variable (typically represented by x)
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
5-4 Parameters for Binomial Distributions In this section we consider important characteristics of a binomial distribution including center, variation.
Slide Slide 1 Section 5-3 Binomial Probability Distributions.
Section 5-3 Binomial Probability Distributions. Binomial Probability Distribution A binomial probability distribution results from a procedure that meets.
Binomial Probability Distribution
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
1 7.3 RANDOM VARIABLES When the variables in question are quantitative, they are known as random variables. A random variable, X, is a quantitative variable.
Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 5-3.
Slide 1 Copyright © 2004 Pearson Education, Inc. Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions.
Probability Distributions ( 확률분포 ) Chapter 5. 2 모든 가능한 ( 확률 ) 변수의 값에 대해 확률을 할당하는 체계 X 가 1, 2, …, 6 의 값을 가진다면 이 6 개 변수 값에 확률을 할당하는 함수 Definition.
Binomial Probability Distributions
Lecture Slides Elementary Statistics Twelfth Edition
Probability Distributions
Lecture Slides Elementary Statistics Eleventh Edition
Chapter 4 Probability Distributions
Chapter 5 Probability 5.2 Random Variables 5.3 Binomial Distribution
Lecture Slides Elementary Statistics Eleventh Edition
Mean, Variance, and Standard Deviation for the Binomial Distribution
Lecture Slides Essentials of Statistics 5th Edition
Lecture Slides Elementary Statistics Eleventh Edition
Normal as Approximation to Binomial
Elementary Statistics
Lecture Slides Elementary Statistics Twelfth Edition
Overview probability distributions
Elementary Statistics
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Tenth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Random Variables Random variable a variable (typically represented by x) that takes a numerical value by chance. For each outcome of a procedure, x takes.
Binomial Probability Distributions
Lecture Slides Essentials of Statistics 5th Edition
Normal as Approximation to Binomial
Lecture Slides Essentials of Statistics 5th Edition
Lecture Slides Essentials of Statistics 5th Edition
Presentation transcript:

Binomial Distributions Section 4.2 Binomial Distributions

Key Concept This section presents a basic definition of a binomial distribution along with notation, and it presents methods for finding probability values. Binomial probability distributions allow us to deal with circumstances in which the outcomes belong to two relevant categories such as acceptable/defective or survived/died.

Definitions A binomial probability distribution results from a procedure that meets all the following requirements: 1. The procedure has a fixed number of trials. 2. The trials must be independent. (The outcome of any individual trial doesn’t affect the probabilities in the other trials.) 3. Each trial must have all outcomes classified into two categories (commonly referred to as success and failure). Binomial probability distributions are important because they allow us to deal with circumstances in which the outcomes belong to TWO categories, such as pass/fall, acceptable/defective, etc. page 196 of text 4. The probability of a success remains the same in all trials.

Notation for Binomial Probability Distributions S and F (success and failure) denote two possible categories of all outcomes; p and q will denote the probabilities of S and F, respectively, so P(S) = p (p = probability of success) The word success is arbitrary and does not necessarily represent something GOOD. If you are trying to find the probability of deaths from hang-gliding, the ‘success’ probability is that of dying from hang-gliding. Remind students to carefully look at the probability (percentage or rate) provided and whether it matches the probability desired in the question. It might be necessary to determine the complement of the given probability to establish the ‘p’ value of the problem. Page 197 of the text. P(F) = 1 – p = q (q = probability of failure)

Notation (cont) n denotes the number of fixed trials. x denotes a specific number of successes in n trials, so x can be any whole number between 0 and n, inclusive. p denotes the probability of success in one of the n trials. q denotes the probability of failure in one of the n trials. Page 197 of the text. P(x) denotes the probability of getting exactly x successes among the n trials.

Methods for Finding Probabilities We will now discuss three methods for finding the probabilities corresponding to the random variable x in a binomial distribution. Page 198 of the text.

Method 1: Using the Binomial Probability Formula P(x) = • px • qn-x (n – x )!x! n ! for x = 0, 1, 2, . . ., n where n = number of trials x = number of successes among n trials p = probability of success in any one trial q = probability of failure in any one trial (q = 1 – p) page 199 of text

Method 2: Using Table A-1 in Appendix A Part of Table A-1 is shown below. With n = 12 and p = 0.80 in the binomial distribution, the probabilities of 4, 5, 6, and 7 successes are 0.001, 0.003, 0.016, and 0.053 respectively. Page 200 of the text.

Method 3: Using Technology STATDISK, Minitab, Excel and the TI-83 Plus calculator can all be used to find binomial probabilities. Excel TI-83 Plus calculator Page 200 of the text.

Interpretation of Results It is especially important to interpret results. The range rule of thumb suggests that values are unusual if they lie outside of these limits: Maximum usual values = µ + 2  Minimum usual values = µ – 2  Page 209 of text.