Biosynthetic Studies and Genetic Engineering of Pactamycin Analogs with Improved Selectivity toward Malarial Parasites  Wanli Lu, Niran Roongsawang, Taifo.

Slides:



Advertisements
Similar presentations
Volume 19, Issue 9, Pages (September 2012)
Advertisements

Volume 23, Issue 2, Pages (February 2016)
Travis S. Young, Pieter C. Dorrestein, Christopher T. Walsh 
Volume 20, Issue 8, Pages (August 2013)
Biosynthesis of the Antitumor Agent Chartreusin Involves the Oxidative Rearrangement of an Anthracyclic Polyketide  Zhongli Xu, Kathrin Jakobi, Katrin.
Volume 20, Issue 10, Pages (October 2013)
Scratch n’ Screen for Inhibitors of Cell Migration
Rasmus D. Jahnsen, Evan F. Haney, Henrik Franzyk, Robert E.W. Hancock 
Adding Specificity to Artificial Transcription Activators
Marcel Zimmermann, Julian D. Hegemann, Xiulan Xie, Mohamed A. Marahiel 
Volume 20, Issue 6, Pages (June 2013)
Volume 13, Issue 4, Pages (April 2006)
Volume 15, Issue 10, Pages (May 2005)
Volume 20, Issue 8, Pages (August 2013)
Volume 18, Issue 4, Pages (April 2011)
Volume 21, Issue 11, Pages (November 2014)
Biosynthesis of Actinorhodin and Related Antibiotics: Discovery of Alternative Routes for Quinone Formation Encoded in the act Gene Cluster  Susumu Okamoto,
Collapsing the Proton Motive Force to Identify Synergistic Combinations against Staphylococcus aureus  Maya A. Farha, Chris P. Verschoor, Dawn Bowdish,
Volume 20, Issue 8, Pages (August 2013)
Volume 19, Issue 7, Pages (July 2012)
Benjamin N. Mijts, Pyung Cheon Lee, Claudia Schmidt-Dannert 
Volume 22, Issue 10, Pages (October 2015)
Dinty J. Musk, David A. Banko, Paul J. Hergenrother 
Redesign of a Dioxygenase in Morphine Biosynthesis
Volume 23, Issue 3, Pages (March 2016)
Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis  Anna L. Vagstad, Eric A. Hill, Jason W.
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Volume 18, Issue 7, Pages (July 2011)
Kevin J. Forsberg, Sanket Patel, Timothy A. Wencewicz, Gautam Dantas 
Rasmus D. Jahnsen, Evan F. Haney, Henrik Franzyk, Robert E.W. Hancock 
Yihan Wu, Mohammad R. Seyedsayamdost  Cell Chemical Biology 
Structure-Guided Design of Fluorescent S-Adenosylmethionine Analogs for a High- Throughput Screen to Target SAM-I Riboswitch RNAs  Scott F. Hickey, Ming C.
Volume 12, Issue 12, Pages (December 2005)
Volume 18, Issue 11, Pages (November 2011)
Volume 18, Issue 10, Pages (October 2011)
Volume 19, Issue 12, Pages (December 2012)
Volume 22, Issue 2, Pages (February 2015)
Volume 19, Issue 6, Pages (June 2012)
Johnson Cheung, Michael E.P. Murphy, David E. Heinrichs 
PqsE of Pseudomonas aeruginosa Acts as Pathway-Specific Thioesterase in the Biosynthesis of Alkylquinolone Signaling Molecules  Steffen Lorenz Drees,
Identification of Small Molecule Inhibitors that Distinguish between Non-Transferrin Bound Iron Uptake and Transferrin-Mediated Iron Transport  Jing Xu.
Volume 20, Issue 4, Pages (April 2013)
Charlene Depry, Sohum Mehta, Ruojing Li, Jin Zhang  Chemistry & Biology 
Volume 16, Issue 5, Pages (May 2009)
Volume 22, Issue 2, Pages (February 2015)
An Artificial Pathway to 3,4-Dihydroxybenzoic Acid Allows Generation of New Aminocoumarin Antibiotic Recognized by Catechol Transporters of E. coli  Silke.
Volume 25, Issue 4, Pages e5 (April 2018)
Volume 18, Issue 1, Pages (January 2011)
One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool  Sina Rütschlin, Sandra Gunesch, Thomas.
Volume 17, Issue 4, Pages (April 2010)
Volume 16, Issue 5, Pages (May 2009)
Volume 13, Issue 8, Pages (August 2006)
Volume 18, Issue 12, Pages (December 2011)
B. subtilis GS67 Protects C
Volume 18, Issue 5, Pages (May 2011)
A Family of Pyrazinone Natural Products from a Conserved Nonribosomal Peptide Synthetase in Staphylococcus aureus  Michael Zimmermann, Michael A. Fischbach 
Volume 18, Issue 5, Pages (May 2011)
Analyzing Fission Yeast Multidrug Resistance Mechanisms to Develop a Genetically Tractable Model System for Chemical Biology  Shigehiro A. Kawashima,
Dual Carbamoylations on the Polyketide and Glycosyl Moiety by Asm21 Result in Extended Ansamitocin Biosynthesis  Yan Li, Peiji Zhao, Qianjin Kang, Juan.
Volume 21, Issue 9, Pages (September 2014)
Volume 19, Issue 3, Pages (March 2012)
Volume 18, Issue 1, Pages (January 2011)
Volume 13, Issue 7, Pages (July 2006)
Volume 18, Issue 11, Pages (November 2011)
Volume 16, Issue 9, Pages (September 2009)
Volume 17, Issue 5, Pages (May 2010)
Volume 17, Issue 8, Pages (August 2010)
Volume 20, Issue 8, Pages (August 2013)
Volume 21, Issue 9, Pages (September 2014)
Volume 22, Issue 4, Pages vii-viii (April 2015)
Presentation transcript:

Biosynthetic Studies and Genetic Engineering of Pactamycin Analogs with Improved Selectivity toward Malarial Parasites  Wanli Lu, Niran Roongsawang, Taifo Mahmud  Chemistry & Biology  Volume 18, Issue 4, Pages 425-431 (April 2011) DOI: 10.1016/j.chembiol.2011.01.016 Copyright © 2011 Elsevier Ltd Terms and Conditions

Chemistry & Biology 2011 18, 425-431DOI: (10. 1016/j. chembiol. 2011 Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 1 Biosynthesis of Pactamycin (A) A synopsis of the proposed biosynthetic pathway to pactamycin is shown. (B) The core biosynthetic gene cluster of pactamycin and the putative tailoring genes are shown. For additional details supporting data from this figure, see Figure S1. Chemistry & Biology 2011 18, 425-431DOI: (10.1016/j.chembiol.2011.01.016) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 2 Partial Mass Spectra of the Ethyl Acetate Extracts Obtained from the Culture Broths of the Wild-Type and the Mutant Strains of S. pactum (A–E) Wild-type (A), ΔptmD (B), ΔptmH (C), ΔptmQ (D), and ΔptmH/ΔptmQ (E) strains are shown. Thick arrows indicate positions at which modifications take place. For additional experiments supporting data from this figure, see Figures S2–S4. Chemistry & Biology 2011 18, 425-431DOI: (10.1016/j.chembiol.2011.01.016) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 3 Antimalarial Activity of Pactamycin Analogs against the Chloroquine-Sensitive (D6) and Chloroquine-Resistant (Dd2) Strains of Plasmodium falciparum (A–F) Chloroquine (A), TM-025 (B), TM-026 (C), pactamycate (D), pactamycin (E), and N-acetylglucosaminyl-3-aminoacetophenone (F) are shown. All values are presented as relative fluorescence units (RFU). Each value is mean ± SEM of quadruplicate values from a representative experiment. The 50% and 90% inhibitory concentrations (IC50 and IC90) were determined by nonlinear regression analysis of logistic dose-response curves (GraphPad Prism software). Chemistry & Biology 2011 18, 425-431DOI: (10.1016/j.chembiol.2011.01.016) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 4 Antibacterial and Cytotoxicity Assays of Pactamycin Analogs (A–D) Agar-diffusion assay of pactamycin analogs against S. aureus (A), B. subtilis (B), P. aeruginosa (C), and E. coli (D) are shown. 1, 20 μl 10 mM TM-025; 2, 20 μl 1 mM TM-025; 3, 20 μl 10 mM TM-026; 4, 20 μl 1 mM TM-026; 5, 20 μl 10 mM pactamycin; 6, 20 μL 1 mM pactamycin; 7, 20 μl 10 mM N-acetyl-glucosaminyl-3-aminoacetophenone; 8. 5 μl 1 mg/ml ampicillin. (E–H) Microdilution assay of pactamycin analogs against S. aureus (E), B. subtilis (F), P. aeruginosa (G), and E. coli (H) are shown. TM-025: 1 mM–10 nM; TM-026: 1 mM–10 nM; Pct (pactamycin): 0.5 mM–10 nM; Amp (ampicillin): 10 mg/ml–0.1 μg/ml; Apra (apramycin): 5 mg/ml–50 ng/ml; NC, negative control. Molar concentrations were used for pactamycin analogs to reflect more accurate comparisons between those compounds. (I–J) Cytotoxicity assay of pactamycin analogs against HCT116 cells using broad-range concentrations at 48 hr (I), narrow-range concentrations at 24 hr (J), and narrow-range concentrations at 48 hr (K). Blue triangles represent pactamycin, black circles represent TM-025, red squares represent TM-026, and green triangles represent N-acetyl-glucosaminyl-3-aminoacetophenone. All values are presented as percentage of viable cells, which was calculated relative to the no treatment and solvent only wells. Each value is mean ± SEM of triplicate values from a representative experiment. Chemistry & Biology 2011 18, 425-431DOI: (10.1016/j.chembiol.2011.01.016) Copyright © 2011 Elsevier Ltd Terms and Conditions