Bandgap modification due to strain

Slides:



Advertisements
Similar presentations
A 10-a editie a Seminarului National de nanostiinta si nanotehnologie 18 mai 2011 Biblioteca Academiei Romane Tight-binding (TB) methods: Empirical Tight-binding.
Advertisements

Contact Modeling and Analysis of InAs HEMT Seung Hyun Park, Mehdi Salmani-Jelodar, Hong-Hyun Park, Sebastian Steiger, Michael Povoltsky, Tillmann Kubis,
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
1 X 2  : NO C 2  : z z  = 3/2  = 1/2 Spin-orbit interaction Orbit-rot. interaction z  = 3/2  = 1/2 Spin-orbit interaction Orbit-rot. interaction.
Tutorial5: (real) Device Simulations – Quantum Dots Jean Michel D. Sellier Yuling Hsueh, Hesameddin Ilatikhameneh, Tillmann Kubis, Michael Povolotskyi,
Lecture 25 Quantum Mechanics of Atoms and Atomic Systems Chapter  Outline Quantum Mechanics and Periodic Table Atomic Structure and Conductivity.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Tutorial 6 – Device Simulation:
Disorder and chaos in quantum system: Anderson localization and its generalization (6 lectures) Boris Altshuler (Columbia) Igor Aleiner (Columbia)
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First-time User Guide for Piecewise.
Physics “Advanced Electronic Structure” Lecture 3. Improvements of DFT Contents: 1. LDA+U. 2. LDA+DMFT. 3. Supplements: Self-interaction corrections,
Network for Computational Nanotechnology (NCN) NanoElectronic Modeling with the NEMO toolkit on nanoHUB Jim Fonseca Network for Computational Nanotechnology.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Quantum Transport in Ultra-scaled.
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Atomistic.
Temperature Simulations of Magnetism in Iron R.E. Cohen and S. Pella Carnegie Institution of Washington Methods LAPW:  Spin polarized DFT (collinear)
Materials 286K Class 02. The Peierls distortion seen in 1D chains: The simplest model for a gap. Note that we go from being valence-imprecise.
Magnetoresistance in oxydized Ni nanocontacts Department of Applied Physics, U. Alicante, SPAIN D. Jacob, J. Fernández-Rossier, J. J. Palacios
IWCE, Purdue, Oct , 2004 Seungwon Lee Exchange Coupling in Si-Quantum-Dot-Based Quantum Computer Seungwon Lee 1, Paul von Allmen 1, Susan N. Coppersmith.
4/15/2015PHY 752 Spring Lecture 321 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 32:  The Hubbard model  Motivation.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Tutorial 5 Strain Hesameddin Ilatikhameneh.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First Time User Guide to OMEN Nanowire**
Efficient solution algorithm of non-equilibrium Green’s functions in atomistic tight binding representation Yu He, Lang Zeng, Tillmann Kubis, Michael Povolotskyi,
Мэдээллийн Технологийн Сургууль Монгол Улсын Их Сургууль Some features of creating GRID structure for simulation of nanotransistors Bolormaa Dalanbayar,
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Using NEMO5 to quantitatively predict.
Electronic instabilities Electron phonon BCS superconductor Localization in 1D - CDW Electron-electron (  ve exchange)d-wave superconductor Localization.
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP NEMO5.
Tutorial3: NEMO5 Models Jean Michel D. Sellier, Tillmann Kubis, Michael Povolotskyi, Jim Fonseca, Gerhard Klimeck Network for Computational Nanotechnology.
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Tight-Binding.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Generation of Empirical Tight Binding.
The first principle calculation study on half-metallic spinel My research work: Presenter: Min Feng Advisor: Professor Xu Zuo College of Information Technical.
Relativistic effects in ADF Erik van Lenthe, SCM.
Valley Splitting Theory for Quantum Wells
Module A-4 Molecular Electronics. Bohr Atomic Model.
Using NEMO5 to quantitatively predict topological insulator behaviour
Organization Introduction Simulation Approach Results and Discussion
Unbiased Numerical Studies of Realistic Hamiltonians for Diluted Magnetic Semiconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee,
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First Time User Guide to MOSCAP*
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First time user guide for RTD-NEGF.
Electronic Properties of Si Nanowires Yun Zheng, 1 Cristian Rivas, Roger Lake, Khairul Alam, 2 Timothy Boykin, and 3 Gerhard Klimeck Deptartment of Electrical.
1 LDA+Gutzwiller Method for Correlated Electron Systems: Formalism and Its Applications Xi Dai Institute of Physics (IOP), CAS Beijing, China Collabrators:
The Quantum Theory of Magnetism Carlo Maria Canali Linnaeus University 7 December 2011 – Lecture 21.
Van Roekeghem et al., EPL (2014) Electronic structure calculations in strongly correlated materials A short overview Pascal Delange - Journée scientifique.
Modeling of Quantum Noise with Electron-Phonon Interactions
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Optical Transitions in Realistic Quantum Dots: Fluctuations with Size
Single-molecule transistors: many-body physics and possible applications Douglas Natelson, Rice University, DMR (a) Transistors are semiconductor.
Spin-Orbit Coupling (SOC) Parameters in Si/SiGe QWs: Structure (SIA) and Bulk (BIA) Inversion Asymmetry Objective: Previous theoretical models for T2.
Introduction to Tight-Binding
Predicting TMD gated structure stark effect photoluminescence
Contact Resistance Modeling in HEMT Devices
Band Structure Lab with NEMO5 Yi Shen, Nicolás Esquivel Camacho, Michael Povolotskyi ,and Gerhard Klimeck Approach: The communication between Rappture.
OMEN: a Quantum Transport Modeling Tool for Nanoelectronic Devices
Objective: Demonstrate BTBT capability Approach:
Module A-4 Molecular Electronics
Band-structure calculation
NEEDS Annual Review: May 8-9, 2017

استراتيجيات تعديل السلوك بين النظرية والتطبيق
Study and Modification of the Graphene-Hydrogen adsorption barrier
Dirac Line Nodes in Inversion Symmetric Crystals C. L. Kane & A. M
UC Davis conference on electronic structure, June. 2009
Routing Valley Excitons with a Metasurface
CV simulation of SiGe bulk p-mosFETs -Abhijeet Paul1, Shweta Deora2 & Gerhard Klimeck1 Results: Objective: Simulation of CV for bulk SiGe p-mosFETs and.
Wei Luo, Hongjun Xiang* Introduction
Observation of Fermi arc surface states in a topological metal
How do spins interact with
Quantum Numbers.
Electronic Conductivity in Solids
Exotic magnetic states in two-dimensional organic superconductors
Ab initio calculation of magnetic exchange parameters
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

Bandgap modification due to strain Quantum Transport in Piezoelectronic Transistor Zhengping Jiang, Yaohua Tan, Michael Povolotskyi, Tillmann Kubis, Gerhard Klimeck (Purdue) Marcelo A. Kuroda, Dennis M. Newns, Glenn J. Martyna (IBM) Timothy B. Boykin (UAH) Objectives Tight binding (TB) parameterization of piezoresistive material SmSe Quantum transport in Piezoelectronic Transistor Methods Generalized gradient approximation (GGA) with spin-orbit (SO) coupling Hubbard-type on-site electron-electron repulsion U Parameter mapping from DFT to ETB Result ETB parameterization captures the Metal-Insulator Transition (MIT) with strain successfully Device design and bulk band structure Impacts Capture electron behavior in strong-interaction system with existing TB model TB parameterization of transition metal materials with localized f-electrons Bandgap modification due to strain