Volume 79, Issue 1, Pages (July 2000)

Slides:



Advertisements
Similar presentations
Nanoparticle interaction with model lung surfactant monolayers by Rakesh Kumar Harishchandra, Mohammed Saleem, and Hans-Joachim Galla Interface Volume.
Advertisements

How Do Thermophilic Proteins and Proteomes Withstand High Temperature? Lucas Sawle, Kingshuk Ghosh Biophysical Journal Volume 101, Issue 1, Pages
Molecular Model of a Cell Plasma Membrane With an Asymmetric Multicomponent Composition: Water Permeation and Ion Effects Robert Vácha, Max L. Berkowitz,
The Nuclear Pore Complex Mystery and Anomalous Diffusion in Reversible Gels Thomas Bickel, Robijn Bruinsma Biophysical Journal Volume 83, Issue 6, Pages.
Contrast Inversion in the Epifluorescence of Cholesterol-Phospholipid Monolayers T.M. Okonogi, H.M. McConnell Biophysical Journal Volume 86, Issue 2, Pages.
A Hydrodynamic Model for Hindered Diffusion of Proteins and Micelles in Hydrogels Ronald J. Phillips Biophysical Journal Volume 79, Issue 6, Pages
Lever-Arm Mechanics of Processive Myosins Yujie Sun, Yale E. Goldman Biophysical Journal Volume 101, Issue 1, Pages 1-11 (July 2011) DOI: /j.bpj
Mesoscale Simulation of Blood Flow in Small Vessels Prosenjit Bagchi Biophysical Journal Volume 92, Issue 6, Pages (March 2007) DOI: /biophysj
The Importance of the Hook Region of the Cochlea for Bone-Conduction Hearing Namkeun Kim, Charles R. Steele, Sunil Puria Biophysical Journal Volume 107,
Agarose-Dextran Gels as Synthetic Analogs of Glomerular Basement Membrane: Water Permeability Jeffrey A. White, William M. Deen Biophysical Journal Volume.
Near-Critical Behavior of Aminoacyl-tRNA Pools in E. coli at Rate-Limiting Supply of Amino Acids Johan Elf, Måns Ehrenberg Biophysical Journal Volume 88,
Membrane Physical Chemistry - II
Interaction of LL-37 with Model Membrane Systems of Different Complexity: Influence of the Lipid Matrix  E. Sevcsik, G. Pabst, W. Richter, S. Danner,
Volume 111, Issue 7, Pages (October 2016)
Volume 80, Issue 4, Pages (April 2001)
Volume 76, Issue 2, Pages (February 1999)
Volume 97, Issue 5, Pages (September 2009)
Antonio Cruz, Luis Vázquez, Marisela Vélez, Jesús Pérez-Gil 
Plasmonic Electricity: A Digital form of Metal-Enhanced Fluorescence
Volume 96, Issue 12, Pages (June 2009)
Liquid-Crystalline Collapse of Pulmonary Surfactant Monolayers
Visualizing the Analogy between Competitive Adsorption and Colloid Stability to Restore Lung Surfactant Function  Ian C. Shieh, Alan J. Waring, Joseph A.
Insertion of Alzheimer’s Aβ40 Peptide into Lipid Monolayers
Volume 89, Issue 5, Pages (November 2005)
Volume 107, Issue 10, Pages (November 2014)
Coralie Alonso, Alan Waring, Joseph A. Zasadzinski  Biophysical Journal 
Volume 100, Issue 6, Pages (March 2011)
The Mechanism of Collapse of Heterogeneous Lipid Monolayers
Lung Surfactant Protein SP-B Promotes Formation of Bilayer Reservoirs from Monolayer and Lipid Transfer between the Interface and Subphase  Svetlana Baoukina,
Karen Sabatini, Juha-Pekka Mattila, Paavo K.J. Kinnunen 
Patrick R. Murray  The Journal of Molecular Diagnostics 
Volume 96, Issue 12, Pages (June 2009)
Volume 101, Issue 1, Pages (July 2011)
Volume 97, Issue 2, Pages (July 2009)
Robert W. Walters, Robert R. Jenq, Stephen B. Hall  Biophysical Journal 
Volume 80, Issue 5, Pages (May 2001)
Scanning Near-Field Fluorescence Resonance Energy Transfer Microscopy
Benjamin L. Stottrup, Sarah L. Keller  Biophysical Journal 
Volume 114, Issue 5, Pages (March 2018)
Gel-Assisted Formation of Giant Unilamellar Vesicles
Effect of Hydrophobic Surfactant Proteins SP-B and SP-C on Phospholipid Monolayers. Protein Structure Studied Using 2D IR and βν Correlation Analysis 
Pulmonary Surfactant Protein SP-C Counteracts the Deleterious Effects of Cholesterol on the Activity of Surfactant Films under Physiologically Relevant.
Volume 107, Issue 12, Pages (December 2014)
Rong-juan Feng, Lu Lin, Yi-yi Li, Ming-hua Liu, Yuan Guo, Zhen Zhang 
Volume 107, Issue 10, Pages (November 2014)
Roman Volinsky, Riku Paananen, Paavo K.J. Kinnunen  Biophysical Journal 
Volume 95, Issue 6, Pages (September 2008)
T.M. Okonogi, H.M. McConnell  Biophysical Journal 
Orsolya Toke, W. Lee Maloy, Sung Joon Kim, Jack Blazyk, Jacob Schaefer 
Volume 110, Issue 3, Pages (February 2016)
Volume 84, Issue 1, Pages (January 2003)
Scanning Force Microscopy at the Air-Water Interface of an Air Bubble Coated with Pulmonary Surfactant  D. Knebel, M. Sieber, R. Reichelt, H.-J. Galla,
Helical Peptoid Mimics of Lung Surfactant Protein C
Volume 96, Issue 6, Pages (March 2009)
Tapani Viitala, Jouko Peltonen  Biophysical Journal 
Volume 103, Issue 5, Pages (September 2012)
Volume 78, Issue 1, Pages (January 2000)
Spontaneous Formation of Two-Dimensional and Three-Dimensional Cholesterol Crystals in Single Hydrated Lipid Bilayers  Roy Ziblat, Iael Fargion, Leslie.
Volume 94, Issue 11, Pages (June 2008)
Interaction of Lung Surfactant Proteins with Anionic Phospholipids
Phospholipase D Activity Is Regulated by Product Segregation and the Structure Formation of Phosphatidic Acid within Model Membranes  Kerstin Wagner,
Lipid Asymmetry in DLPC/DSPC-Supported Lipid Bilayers: A Combined AFM and Fluorescence Microscopy Study  Wan-Chen Lin, Craig D. Blanchette, Timothy V.
Sergi Garcia-Manyes, Gerard Oncins, Fausto Sanz  Biophysical Journal 
Volume 94, Issue 8, Pages (April 2008)
Volume 102, Issue 6, Pages (March 2012)
Volume 101, Issue 11, Pages (December 2011)
Pulmonary Surfactant Model Systems Catch the Specific Interaction of an Amphiphilic Peptide with Anionic Phospholipid  Hiromichi Nakahara, Sannamu Lee,
Volume 96, Issue 12, Pages (June 2009)
Volume 90, Issue 9, Pages (May 2006)
Volume 94, Issue 8, Pages (April 2008)
Presentation transcript:

Volume 79, Issue 1, Pages 357-369 (July 2000) Analysis of Lung Surfactant Model Systems with Time-of-Flight Secondary Ion Mass Spectrometry  Nikolaus Bourdos, Felix Kollmer, Alfred Benninghoven, Michaela Ross, Manfred Sieber, Hans-Joachim Galla  Biophysical Journal  Volume 79, Issue 1, Pages 357-369 (July 2000) DOI: 10.1016/S0006-3495(00)76297-7 Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 1 Surface pressure-area diagram of a monolayer of DPPC, DPPG, and SP-C on a pure water subphase at pH 5.8 and at 20°C. The molar ratio of DPPC and DPPG is 4:1, the SP-C content is 0.4mol %. The isotherm exhibits an extensive plateau region close to 50 mN/m. Cyclic compression beyond the plateau always develops the same isotherm; the film collapse is fully reversible. Biophysical Journal 2000 79, 357-369DOI: (10.1016/S0006-3495(00)76297-7) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 2 TOF-SIMS spectrum of positive SI from an LB layer of DPPC/DPPG/SP-C, prepared at plateau pressure on gold. PIDD: 3.4×1012cm−2. Biophysical Journal 2000 79, 357-369DOI: (10.1016/S0006-3495(00)76297-7) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 3 TOF-SIMS spectrum (fingerprint range) of positive SI from SP-C, prepared on silver by spin-coating of 1 nmol of SP-C, solved in isopropanol/water. PIDD: 6.8×1011cm−2. Inset: molecular ion peak of SP-C. Biophysical Journal 2000 79, 357-369DOI: (10.1016/S0006-3495(00)76297-7) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 4 Images of DPPC/DPPG monolayers. (A–H) Maps of positive SI at 6 and 30mN/m. PIDD: 1.0×1013cm−2 (6mN/m), 7.0×1012cm−2 (30mN/m); (I) 6mN/m, Ca+; (K) 6mN/m, sum image of several positive SI; (L) 6mN/m, silver-decorated; (I) and (K) are digitally enhanced. Biophysical Journal 2000 79, 357-369DOI: (10.1016/S0006-3495(00)76297-7) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 5 Images of DPPC/SP-C monolayers. Maps of positive SI at 6 and 30mN/m. PIDD: 7.4×1012cm−2 (6mN/m), 4.9×1012cm−2 (30mN/m). Biophysical Journal 2000 79, 357-369DOI: (10.1016/S0006-3495(00)76297-7) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 6 Images of DPPG/SP-C monolayers. (A–I) Maps of positive SI at 6, 30, and 50mN/m (plateau); (K) Plateau, sum image of several amino acid-specific positive SI; (L) Plateau, Ca+; PIDD: 1.9×1013cm−2 (6mN/m), 8.1×1012cm−2 (30mN/m), 5.9×1013cm−2 (50mN/m). (M) Plateau, scanning force micrograph. Bright areas are higher than the dark (no scale bar given). (N–P) Fluorescence micrographs at 6, 30, and 50mN/m. Biophysical Journal 2000 79, 357-369DOI: (10.1016/S0006-3495(00)76297-7) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 7 Images of layers prepared from the ternary mixture DPPC/DPPG/SP-C. (A–S) Maps of positive SI at 6, 30, and 50mN/m; (G) is digitally enhanced. PIDD 8.1×1012cm−2 (6mN/m), 2.0×1013cm−2 (30mN/m), 4.6×1013cm−2 (50mN/m). Biophysical Journal 2000 79, 357-369DOI: (10.1016/S0006-3495(00)76297-7) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 8 Additional images from the plateau region of DPPC/DPPG/SP-C layers: (A) Sum image of several positive SI; (B) M42 (CNO−); (C) Fluorescence micrograph; (D) Scanning force micrograph. Biophysical Journal 2000 79, 357-369DOI: (10.1016/S0006-3495(00)76297-7) Copyright © 2000 The Biophysical Society Terms and Conditions