Electromagnetic Induction

Slides:



Advertisements
Similar presentations
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Advertisements

Chapter 22 Electromagnetic Induction Induced Emf and Induced Current There are a number of ways a magnetic field can be used to generate an electric.
Copyright © 2009 Pearson Education, Inc. Lecture 9 – Electromagnetic Induction.
Induction experiments(sec. 29.1) Faraday’s law (sec. 29.2) Lenz’s law(sec. 29.3) Motional electromotive force(sec. 29.4) Induced electric fields(sec. 29.5)
Induction experiments(sec. 29.1) Faraday’s law (sec. 29.2) Lenz’s law(sec. 29.3) Motional electromotive force(sec. 29.4) Induced electric fields(sec. 29.5)
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
When a coil of wire and a bar magnet are moved in relation to each other, an electric current is produced. This current is produced because the strength.
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment A primary coil is connected to a battery and a secondary coil is connected to an ammeter.
Chapter 21 Electromagnetic Induction and Faraday’s Law.
General electric flux definition
Electromagnetic Induction
Chapter 31 Faraday’s Law.
Chapter 29 Electromagnetic Induction and Faraday’s Law
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment – Set Up A current can be produced by a changing magnetic field First shown in an experiment.
Chapter 31 Faraday’s Law. Introduction This section we will focus on the last of the fundamental laws of electromagnetism, called Faraday’s Law of Induction.
Induced Voltages and Inductance
AP Physics C III.E – Electromagnetism. Motional EMF. Consider a conducting wire moving through a magnetic field.
Chapter 21 Magnetic Induction. Electric and magnetic forces both act only on particles carrying an electric charge Moving electric charges create a magnetic.
Fall 2008Physics 231Lecture 9-1 Electromagnetic Induction.
My Chapter 20 Lecture Outline.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
Right-hand Rule 2 gives direction of Force on a moving positive charge Right-Hand Rule Right-hand Rule 1 gives direction of Magnetic Field due to current.
PHY 102: Lecture Induced EMF, Induced Current 7.2 Motional EMF
AP Physics C III.E – Electromagnetism. Motional EMF. Consider a conducting wire moving through a magnetic field.
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
ELECTRICAL MACHINES Electrical Machines.
Physics 4 – March 30, 2017 P3 Challenge – A uniform magnetic field of B = 3.5 mT is directed into the page. An electron approaches this field from the.
Electromagnetic Induction
Chapter 21: Electromagnetic Induction
Electromotive Force Revisited
Chapter 31: Faraday’s Law
EMF Induced in a Moving Conductor (“Motional EMF”)
ElectroMagnetic Induction
Lecture 3-5 Faraday’ s Law (pg. 24 – 35)
Magnetic Induction Review of Chapter 22.
Electromagnetic induction
Magnetism & Electromagnetism
Warm-up Why do loops of wire in a motor rotate?
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Electromagnetic Induction
General Physics (PHY 2140) Lecture 15 Electricity and Magnetism

General Physics (PHY 2140) Lecture 17 Electricity and Magnetism
Recap Field perpendicular to current B
General Physics (PHY 2140) Lecture 16 Electricity and Magnetism
Electromagnetic Induction and Faraday’s Law
Chapter 31A - Electromagnetic Induction
Faraday’s Law Discovered in 1830s by Michael Faraday and Joseph Henry. Faraday was a poor boy and worked as a lab assistant and eventually took over the.
I2 is decreasing in magnitude I2 is constant
Electromagnetic Induction
Phys102 Lecture 18/19 Electromagnetic Induction and Faraday’s Law
Electromagnetic Induction
ElectroMagnetic Induction
EMF Induced in a Moving Conductor (“Motional EMF”)
ElectroMagnetic Induction
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
ElectroMagnetic Induction
Electromagnetic Induction
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Electromotive Force Revisited
Right-Hand Rule Right-hand Rule 1 gives direction of Magnetic Field due to current Right-hand Rule 2 gives direction of Force on a moving positive charge.
ElectroMagnetic Induction
Electromotive Force Revisited
Electricity and Magnetism
Induction and Inductance Chapter 30
ElectroMagnetic Induction
Electromagnetic Induction and Faraday’s Law
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Presentation transcript:

Electromagnetic Induction Chapter 29 Electromagnetic Induction

Goals for Chapter 29 To examine experimental evidence that a changing magnetic field induces an emf To learn how Faraday’s law relates the induced emf to the change in magnetic flux To determine the direction of an induced emf

Goals for Chapter 29 To calculate the emf induced by a moving conductor To learn how a changing magnetic flux generates an electric field To study Maxwell’s Equations – the four fundamental equations that describe electricity and magnetism

Introduction How is a credit card reader related to magnetism? Energy conversion makes use of electromagnetic induction.

Magnetic flux from Chapter 27  

Induced current A changing magnetic flux causes an induced current. No change => NO induced current!

Induced current A changing magnetic flux causes an induced current. The induced emf is the corresponding emf causing the current.

Whether the source is a magnet or electromagnet doesn’t matter! Induced current A changing magnetic flux causes an induced current. The induced emf is the corresponding emf causing the current. Whether the source is a magnet or electromagnet doesn’t matter!

Whether the source is moving or its current changes doesn’t matter Induced current A changing magnetic flux causes an induced current. The induced emf is the corresponding emf causing the current. Whether the source is moving or its current changes doesn’t matter

Induced current A changing magnetic flux causes an induced current. The induced emf is the corresponding emf causing the current. Change B flux  Create EMF  Create Current!

Magnetic flux through an area element

Flux revisited Flux depends on orientation of surface with respect to B field.

Flux revisited Flux depends on orientation of surface with respect to B field.

Flux revisited Flux depends on orientation of surface with respect to B field.

Faraday’s law Induced emf in a closed loop equals negative of time rate of change of magnetic flux through the loop  = –dB/dt = VOLTS (Electromotive Force) dB/dt = Rate of Change of B field FLUX through surface – sign means EMF opposes change

Faraday’s law Induced emf in a closed loop equals negative of time rate of change of magnetic flux through the loop  = –dB/dt In this case, if the flux changed from maximum to minimum in some time t, and loop was conducting, an EMF would be generated!

Faraday’s law Induced emf in a closed loop equals negative of time rate of change of magnetic flux through the loop  = –dB/dt [B ]= Tesla-m2 [d B/ dt] = Tesla-m2/sec and from F = qv x B Teslas = Newtons-sec/Coulomb-meters [N/C][sec/meters] [d B/ dt] = [N/C][sec/meter][m2/sec] = Nm/C = Joule/C = VOLT!

Emf and the current induced in a loop Example 29.1: What is induced EMF & Current?

Emf and the current induced in a loop Example 29.1: What is induced EMF & Current? df/dt = d(BA)/dt = (dB/dt) A = 0.020 T/s x 0.012 m2 = 0.24 mV I = E/R = 0.24 mV/5.0W = 0.048 mA

What are fundamental differences between Goal What are fundamental differences between Generators Motors Alternators

How do you solve HW problem like 29.30? Goal What are fundamental differences between generators, motors, & alternators? How do you solve HW problem like 29.30? A 0.850 m-long metal bar is pulled to the right at a steady 6.0 m/s perpendicular to a uniform, 0.850-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ohm, resistor  so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Calculate the magnitude & direction of the emf induced in the circuit, and the current.

Direction of the induced emf Direction of induced current from EMF creates B field to KEEP original flux constant! Increasing FLUX N v

Direction of the induced emf Direction of induced current from EMF creates B field to KEEP original flux constant! Induced current generates B field flux opposing change

Direction of the induced emf Direction of induced current from EMF creates B field to KEEP original flux constant!

Direction of the induced emf Direction of induced current from EMF creates B field to KEEP original flux constant! Induced current generates B field flux opposing change

Direction of the induced emf Direction of induced current from EMF creates B field to KEEP original flux constant!

Direction of the induced emf Direction of induced current from EMF creates B field to KEEP original flux constant! Induced current generates B field flux opposing change

Direction of the induced emf Direction of induced current from EMF creates B field to KEEP original flux constant!

Direction of the induced emf Direction of induced current from EMF creates B field to KEEP original flux constant! Induced current generates B field flux opposing change

Lenz’s law Lenz’s law: The direction of any magnetic induction effect is such as to oppose the cause of the effect.

Lenz’s law Lenz’s law: The direction of any magnetic induction effect is such as to oppose the cause of the effect. WHY???

Suppose induced current went this way! Why Lenz’s Law? Suppose the opposite was true – increasing flux generated supportive current… Suppose induced current went this way! N v

Why Lenz’s Law? Suppose the opposite was true – increasing flux generated supportive current… Induced current creates B field! N S N v Remember – this isn’t the case!

Why Lenz’s Law? Suppose the opposite was true – increasing flux generated supportive current… B field would ATTRACT incoming magnet! N S N v Force Remember – this isn’t the case!

Why Lenz’s Law? Suppose the opposite was true – increasing flux generated supportive current… Magnet would accelerate! N S N V + at Remember – this isn’t the case!

Why Lenz’s Law? Suppose the opposite was true – increasing flux generated supportive current… KE increases with no work done! N S N V + at Remember – this isn’t the case!

Lenz’s Law is like a conservation of energy relation! Direction of induced current from EMF creates B field to KEEP original flux constant! Induced B field opposes increase in flux! N v

Magnitude and direction of an induced emf 500 loop circular coil with radius 4.00 cm between poles of electromagnet. B field decreases at 0.200 T/second. What are magnitude and direction of induced EMF?

Magnitude and direction of an induced emf 500 loop circular coil with radius 4.00 cm between poles of electromagnet. B field decreases at 0.200 T/second. What are magnitude and direction of induced EMF? Careful with flux ANGLE! f between A and B!  = –N dB/dt = [NdB/dt] x [A cos f] Direction? Since B decreases, EMF resists change…

A simple alternator – Example 29.3 An alternator creates alternating positive and negative currents (AC) as a loop is rotated by an external torque while in a fixed magnetic field (or vice-versa!) Note – w comes from an external rotating force! Water turning a turbine (hydroelectric) Gasoline Motor turning a shaft (AC generator)

A simple alternator – Example 29.3 An alternator creates alternating positive and negative currents (AC) as a loop rotates in a fixed magnetic field (or vice-versa!) Note – NO commutator to reverse current direction in the loop – so you will get ALTERNATING current Recall DC motors! DIFFERENT!

A simple alternator – Example 29.3 An alternator creates alternating positive and negative currents (AC) as a loop rotates in a fixed magnetic field (or vice-versa!) For simple alternator rotating at angular rate of w, what is the induced EMF?

A simple alternator Example 29.3: For simple alternator rotating at angular rate of w, what is induced EMF? B is constant; A is constant Flux B is NOT constant! B = BAcos f Angle f varies in time: f = wt EMF = - d [B ]/dt = -d/dt [BAcos(wt)] So EMF = wBAsin(wt)

A simple alternator EMF = wBAsin(wt)

A simple alternator (check out video!) EMF = wBAsin(wt)

AC Alternators vs. DC Generators An AC generator “Alternator” has continuous slip rings so current always “sloshes” back and forth Slip rings DC generator

AC Alternators vs. DC Generators An AC Alternator has continuous slip rings so current always “sloshes” back and forth Slip rings DC generator AC alternator

AC Alternators vs. DC Generators A DC generator creates ONLY one-directional (positive) current flow with EMF always the same “sign.” Commutator AC alternator DC generator

DC generator and back emf in a motor Commutator results in ONLY unidirectional (“direct”) current flow: EMF(DC gen) = | wBAsin(wt) |

DC generator and back emf in a motor A DC generator creates ONLY one-directional (positive) current flow with EMF always the same “sign.” “Back EMF” Generated from changing flux through the loop DC generator

DC generator and back emf in a motor Average EMF generated = AVG( | wBAsin(wt) | ) over Period T where T = 1/f = 2p/w

DC generator and back emf in a motor  

DC generator and back emf in a motor   Example 29.4: 500 turn coil, with sides 10 cm long, rotating in B field of 0.200 T generates 112 V. What is w?

Lenz’s law Lenz’s law:

Lenz’s law and the direction of induced current

Lenz’s law and the direction of induced current

Slidewire generator – Example 29.5 What is magnitude and direction of induced emf? Area A vector chosen to be into page

Slidewire generator – Example 29.5 B is constant; A is INCREASING => flux increases!

Slidewire generator – Example 29.5 Area A = Lx so dA/dt = L dx/dt = Lv Width x

EMF = - d [B ]/dt = -BdA/dt = -BLv Slidewire generator EMF = - d [B ]/dt = -BdA/dt = -BLv Induced current creates B OUT of page

Work and power in the slidewire generator Let resistance of wires be “R” What is rate of energy dissipation in circuit and rate of work done to move the bar?

Work and power in the slidewire generator EMF = -BLv I = EMF/R = -BLv/R Power = I2R = B2L2v2/R

Work and power in the slidewire generator Work done = Force x Distance Power applied = Work/Time = Force x velocity Power = Fv = iLBv and I = EMF/R Power = (BLv/R)LBv = B2L2v2/R

Motional electromotive force The motional electromotive force (VOLTAGE!) across the ends of a rod moving perpendicular to a magnetic field is  = vBL.  

Motional electromotive force The motional electromotive force across the ends of a rod moving perpendicular to a magnetic field is  = vBL. Without any other forces present FE = FB => No net acceleration

Motional electromotive force Make a complete circuit by adding stationary conducting loop Across entire (stationary) conductor, E field from moving bar will push current

Induced motional electromotive force

Motional electromotive force So what happens? Force on Bar = ILB is to LEFT Bar slows down…

Motional electromotive force So what happens? Force on Bar = ILB is to LEFT Bar slows down… Or… equally! B field flux (into page) increases in loop Generate EMF opposing increase from Faraday’s Law

Motional electromotive force Are these saying the same thing??

Motional electromotive force

How can we use Induced EMF? B +V current Push a large current across the bar – it accelerates!

Rail Guns Use induced forces to accelerate particles to amazing speeds! Not science fiction…

Induced electric fields Wire loop around a solenoid that experiences a changing current. See a NEW current flow in surrounding loop! WHY?? There must be an EMF…

Induced electric fields Vary current in solenoid => vary B field through cylinder Vary flux through loop! Faraday’s Law applies! EMF created! A current will flow… But wait a minute!! © 2016 Pearson Education Inc.

Induced electric fields Solenoid doesn’t HAVE a B field outside!! Wire loop itself is NOT in a B field No “qv x B” applies to make charges in wire loop move!! AHA! Changing magnetic flux causes an induced electric field.

Induced electric fields AHA! Changing magnetic flux causes an induced electric field.

Induced electric fields   Key – the integral path must be stationary And… The E field created is NOT conservative!

Induced electric fields Electric field in loop must drive the current When solenoid current I changes with time, B field flux also changes, & induced EMF can be written in terms of induced electric field: © 2016 Pearson Education Inc.

Displacement current Ampere’s law works fine for wires carrying current. But…. It is incomplete! Consider charging a capacitor – with no wires between the plates! Ampere’s Law: Take line integral around wire: i

Displacement current For the plane circular area bounded by the circle, Iencl is the current iC in the left conductor. But surface that bulges out to right is bounded by the same circle, and the current through that surface is zero. This leads to a contradiction.

Displacement current When capacitor is charging, E field is increasing between the plates. Define “fictitious” displacement current iD in region between the plates. Regard this as source of magnetic field between plates.

Eddy currents When a piece of metal moves through a magnetic field or is located in a changing magnetic field, eddy currents of electric current are induced. The metal detectors used at airport security checkpoints operate by detecting eddy currents induced in metallic objects.

Magnetic Braking! Slowing a falling magnet! Slow a saw blade… Magnetic Braking… Magnetic Trains! Eddy Currents

Eddy Currents – what are they good for? Stop a saw blade!

Faraday disk dynamo Spinning conducting disc in uniform magnetic field. Generates current in connecting wires!

Faraday disk dynamo Current increases with B, with Area, and with rotation rate w What is the EMF in terms of these variables?

Faraday disk dynamo – does this violate Faraday’s Law? NO change in B field! NO change in Area! No change in flux?!! There should NOT be an induced EMF??! But there IS! But if you rotate the *magnet* instead, there is NOT an EMF Shouldn’t it be relative? !$%##

Faraday disk dynamo – does this violate Faraday’s Law?  

What are fundamental differences between Goal What are fundamental differences between Generators Motors Alternators