Used PEP-II 476 MHz Cavities for MEIC Collider Rings

Slides:



Advertisements
Similar presentations
EMMA Cavity Update Emma Wooldridge 27/02/07. Requirements Initial Design Cavity Options & Optimisation Available Designs Future Work.
Advertisements

KAGEYAMA, T. Open Meeting for Proto-Collaboration March 19, 2008.
Beam loading compensation 300Hz positron generation (Hardware Upgrade ??? Due to present Budget problem) LCWS2013 at Tokyo Uni., Nov KEK, Junji.
Future Very High Luminosity Options for PEP-II John T. Seeman For the PEP-II Team e+e- Factories Workshop October 13-16, 2003.
LEP3 RF System: gradient and power considerations Andy Butterworth BE/RF Thanks to R. Calaga, E. Ciapala.
RF scenarios and challenges for FCC-ee A. Butterworth, O. Brunner, CERN with input from R. Calaga, E. Jensen, S. Aull, E. Montesinos, U. Wienands.
1 C-Band Linac Development Satoshi Ohsawa 2004.Feb.19LCPAC.
DEFLECTING CAVITY OPTIONS FOR RF BEAM SPREADER IN LCLS II
Preliminary design of SPPC RF system Jianping DAI 2015/09/11 The CEPC-SppC Study Group Meeting, Sept. 11~12, IHEP.
1 Simulation for power overhead and cavity field estimation Shin Michizono (KEK) Performance (rf power and max. cavity MV/m 24 cav. operation.
PROTON LINAC FOR INDIAN SNS Vinod Bharadwaj, SLAC (reporting for the Indian SNS Design Team)
The RF system for FCC- ee A. Butterworth, CERN Thanks to: O. Brunner, R. Calaga, E. Jensen, E. Montesinos, F. Zimmermann (CERN), U. Wienands (SLAC)
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
2.1 GHz Warm RF Cavity for LEReC Binping Xiao Collider-Accelerator Department, BNL June 15, 2015 LEReC Warm Cavity Review Meeting  June 15, 2015.
RF Tutorial G Burt. TM 010 Monopole Mode E H Beam Z 0 =377 Ohms.
Aug 23, 2006 Half Current Option: Impact on Linac Cost Chris Adolphsen With input from Mike Neubauer, Chris Nantista and Tom Peterson.
BEPCII Transverse Feedback System Yue Junhui Beam Instrumentation Group IHEP , Beijing.
John Carwardine 21 st October 2010 TTF/FLASH 9mA studies: Main studies objectives for January 2011.
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
Cold versus Warm, parameters impacting LC reliability and efficiency contribution to the discussion on risk factors Giorgio Bellettini, Seul ITRP meeting,
Review 09/2010 page RF System for Electron Collider Ring Haipeng Wang for the team of R. Rimmer and F. Marhauser, SRF Institute and Y. Zhang, G. Krafft.
RF 1/33 ALBA RF system why, how and other questions Francis Perez.
Bunch Separation with RF Deflectors D. Rubin,R.Helms Cornell University.
Operated by the Southeastern Universities Research Association for the U. S. Department of Energy Thomas Jefferson National Accelerator Facility 6 March.
Overview Step by step procedure to validate the model (slide 1 and 2) Procedure for the Ql / beam loading study (slide 3 and 4)
Shuichi NoguchiTTC Meeting at Milano, Injector Cryomodule for cERL at KEK Cavity 2 Prototypes were tested. Input Coupler 2 Couplers were tested.
Bunch Shape Monitor for HINS Wai-Ming Tam Project X Collaboration Meeting September 11, 2009.
The LEP Superconducting RF system has reached its maximum configuration of 288 four-cell cavities powered by 36 klystrons in In 2000, this system,
PETRA III at DESY Hamburg/Germany
INJECTION SYSTEM UPDATE
Preliminary injector linac design
Linac possibilities for a Super-B
Update of CLIC accelerating structure design
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Electron Source Configuration
Some CEPC SRF considerations
LHC (SSC) Byung Yunn CASA.
CW Energy Recovery Linac for Next Generation of XFELs
Z6 experiments and necessary beam parameters
DESIGN OF THE HWR CAVITIES FOR SARAF
PETRA IV System design concept Old and new machine
Super-B Factory in a “4400m” Tunnel
Accelerator Physics Particle Acceleration
CEPC SRF System Jiyuan Zhai
Linearization of Bunch Compression (2nd order )
Low Energy Electron-Ion Collision
ERL Director’s Review Main Linac
CEPC SRF Parameters (100 km Main Ring)
RF Parameters Calculation for JLEIC Colliders (e Ring)
JLEIC ion fullsize booster (2256m) space charge limit (Δν=0
Robinson Instability Criteria for MEIC e Ring
Parameters Changed in New MEIC Design
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
MEIC New Baseline: Luminosity Performance and Upgrade Path
Feasibility of Recuperation of Magnets in Decommissioned Storage Rings
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
The MEIC electron ring as the large ion booster
RF Parameters for New 2.2 km MEIC Design
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Update on JLEIC Electron Ring Design
MEIC New Baseline: Part 7
Update on MEIC Nonlinear Dynamics Work
MEIC Alternative Design Part V
Possibility of MEIC Arc Cell Using PEP-II Dipole
Cavity tuning options for synchronization
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC Alternative Design Part III
RF Parameters for New 2.2 km MEIC Design
MEIC beam path change with e-ring bypass lines
JLEIC electron ring with damping wigglers
Presentation transcript:

Used PEP-II 476 MHz Cavities for MEIC Collider Rings The Number of Cavities 36 Shunt Impedance () 7 MW (V2/P) Q0 31000 Coupler Beta 3.5 ~ 4.0 Maximum Vgap 1 MV Maximum Pfwd per Cavity 400 kW The Number of Klystrons 15 Strategy: Split cavities and klystrons in two rings with different cavity/Klystron ratio; Build a couple of new cavities if necessary upfront; Build new SC cavities in the future to gradually replace PEP-II cavities Option 1: 952MHz SC cavities in both rings Option 2: 476MHz SC cavities in e-ring, use PEP-II klystrons; 952MHz in i-ring with new klystrons

Top energy beam current (A) RF stepping up options CMS Energy (GeV) Ring Energy (GeV) Cavity technology Cav Num Cav Pfwd (kW) Total cavity Heat Total Pfwd (MW) Top energy beam current (A) Cavity gradient MV/m 37 e 6.95 476 NC 12 393.6 1.1 MW 4.7 1.1 2.5 ion 50 24 118 877kW 2.8 0.5 2.4 61 9.3 30 428 2.7 MW 12.8 0.95 100 952 SC 4K 83 460W 1 10 69? 18? 476 SC 4K 12? 69 128 16 77.6 571W 1.24 9.7 78.4 422 686W 0.341 7.2

476 MHz Cavities in Collider Rings for Bunch Length of 12 mm (GeV) I (A) Vgap (MV) Pforward (kW) Pcavity (kW) Cavity Number b Klystron Number Note e Ring 9.8 0.9 0.78 418 87.5 36 3.8 18 9.3 0.946 0.79 428 90.1 30 15 8.7 1.0 0.80 433 92.0 24 12 6.95 1.1 394 89.6 6 5.0 1.2 0.69 280 67.4 5 3 Ion Ring 29 0.5 128 88 3.5 2 125 86 16 50 0.76 118 82 100 129 89 48

All SC cavities in 100GeV Ion Ring 𝑑𝑉 𝑑𝑡 =𝑉∙ 𝜔 𝑅𝐹 =1.1∙ 10 17 𝑉/𝑠 𝑃 𝑓𝑤𝑑 ∝1/𝑓 for SC cav, same Y Cav Num Pfwd (kW) Total Pfwd (MW) Coupling beta Total cavity heat Cavity gradient MV/m Tuning angle (deg) Loading factor Y 476 MHz 16 125 2.0 1.60e4 499W 7.5 -67.1 2.37 12 166 1.20e4 665W 10 748.5 MHz 106 1.27 0.975e4 521W 952 MHz 83 1.0 0.87e4 460W 476 warm 48 129 6.2 3.5 4.2MW 2.5 -44.6 0.99

All SC cavities in e Ring @12GeV dY Common parameters: Cavity number = 24 Bunch length = 12 mm Operation Energy = 12 GeV Beam current = 0.341 A Cav Num Pfwd (kW) Prefl (kW) Cavity gradient MV/m Total cavity heat dY 476 MHz 24 421.9 5.21 7.2 686 W 0.25 748.5 MHz 419.46 2.76 8.6 768 W 0.233 952 MHz 9.844 887 W