Alcohols, Ethers, and Thiols

Slides:



Advertisements
Similar presentations
Alcohols & Phenols Dr. Shatha Alaqeel.
Advertisements

Alcohols, phenols ðers. Alcohols and phenols may be viewed as organic derivatives of water. Alcohols and phenols have a common functional group, the.
Organic Chemistry II CHEM 271. Chapter One Alcohols, Diols and Thiols.
PTT 102 Organic Chemistry Alcohol & Ether Reaction of Alcohol and Ethers MISS NOORULNAJWA DIYANA YAACOB.
10-1 Alcohols & Thiols & Ethers Sources Structure, Nomenclature, Properties Acidity and Basicity Rx with active metals Conversion to R-X, inorganic acid.
10-1 Alcohols & Thiols - 10 Sources Structure, Nomenclature, Properties Acidity and Basicity Reaction with active metals Conversion to R-X, inorganic acid.
Chapter 3 Alkenes and Alkynes
Introduction to Organic Chemistry and Biochemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State) Office: 311 Carson Taylor.
8 8-1 Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
Chemistry 121(01) Winter 2009 Introduction to Organic Chemistry and Biochemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State)
Chapter-1 ALCOHOLS. Contents IntroductionNomenclaturePreparationReactions.
Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
Chemistry 2100 Chapter 14.
99-1 Organic Chemistry William H. Brown & Christopher S. Foote.
Chapter 8 Alcohols, Ehters and Thiols. Hydroxyl (OH) functional group Oxygen is sp 3 hybridized.
Chapter 13: Aldehydes and Ketones
Chapter 11 Alcohols & Ethers. 1.Structure & Nomenclature  Alcohols have a hydroxyl (–OH) group bonded to a saturated carbon atom (sp 3 hybridized) 1o1o.
Chapter 14: Alcohols, Ethers, and Thiols Alcohol:OH(hydroxyl) group Alcohol: A compound that contains an -OH (hydroxyl) group bonded to a tetrahedral carbon.
Chapter 14 Alcohols, Ethers, and Thiols Alcohols, Ethers, and Thiols.
Alcohols, Ethers, and Thiols
Carboxylic Acids The functional group of a carboxylic acid is a carboxyl group. Structure of Carboxylic Acids The general formula of an aliphatic carboxylic.
Chapter 5 Alcohols, Ethers, and Thiols. Alcohols Alcohol:OH(hydroxyl) group Alcohol: A compound that contains an -OH (hydroxyl) group bonded to a tetrahedral.
© 2003 Thomson Learning, Inc. All rights reserved General, Organic, and Biochemistry, 7e Bettelheim, Brown, and March.
Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
Chapter 11 Alcohols and Ethers
Chapter 13 Alcohols, Phenols, and Ethers Spencer L. Seager Michael R. Slabaugh Jennifer P. Harris.
Classification of Alcohol Primary: carbon with –OH is bonded to one other carbon. Secondary: carbon with –OH is bonded to two other carbons. Tertiary:
Chapter 1.4 Alcohols, Ethers, and Thiols
General, Organic, and Biochemistry, 8e
Chapter 11 Alcohols and Ethers
Ethers and Epoxides Dr Nahed Elsayed.
Chemistry Department, College of Science, King Saud University
Ethers and Epoxides
Ethers and Epoxides
Lecture 9 Monday 2/6/17.
FUNCTIONAL GROUPS.
Ethers and Epoxides
Alcohols and Phenols
Alcohols د. جهاد الماليطي.
Chapter 13: Alcohols, Phenols, and Ethers
Organic Halides Derivatives of alkanes where one or more hydrogen atoms is replaced by a halogen.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Alcohols and Thiols Unit 11.
Alcohols, Ethers and Thiols
Chapter 17 Aldehydes and Ketones
Ethers & Epoxides Unit 12.
Ethers & Epoxides Unit 12.
Alcohols and Phenols
Chapter 12 Alkenes and Alkynes
Ethers.
Chapter 11 Alcohols and Ethers
Alcohols and Thiols Unit 11.
Ethers.
Structure of Alcohols The functional group of an alcohol is an -OH group bonded to an sp3 hybridized carbon. Bond angles about the hydroxyl oxygen atom.
Chapter 11 Alcohols and Ethers
Structures of Alcohols, Phenols, Thiols and Ethers
Chapter 20 CARBOXYLIC ACIDS.
Ethers and Epoxides
Fundamentals of Organic Chemistry
Fundamentals of Organic Chemistry
Chapter 6 Alcohols and Ethers
Alcohols and Phenols
Ethers and Epoxides Structure
Alcohols, Phenols and Thiols
Ethers.
Compounds containing a single bond to heteroatom:
Fundamentals of Organic Chemistry
ALCOHOLS 340 Chem 1st 1439.
Fundamentals of Organic Chemistry
Organic Chemistry CHEM 145
Presentation transcript:

Alcohols, Ethers, and Thiols CHAPTER EIGHT Alcohols, Ethers, and Thiols Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Alcohols - Structure Figure 8.1 The functional group of an alcohol is an -OH (hydroxyl) group bonded to an sp3 hybridized carbon. Bond angles about the hydroxyl oxygen atom are approximately 109.5°. Oxygen is also sp3 hybridized. Two sp3 hybrid orbitals form sigma bonds to carbon and hydrogen. The remaining two sp3 hybrid orbitals each contain an unshared pair of electrons. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Alcohols - Nomenclature IUPAC names The parent chain is the longest chain that contains the -OH group. Number the parent chain in the direction that gives the -OH group the lower number. Change the suffix -e to -ol. Common names Name the alkyl group bonded to oxygen followed by the word alcohol. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Alcohols - Nomenclature Examples: Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Alcohols - Nomenclature Problem: Write the IUPAC name of each alcohol. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Alcohols - Nomenclature Compounds containing two -OH groups are named as diols, three -OH groups are named as triols. Compounds containing two -OH groups on are called glycols. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Alcohols - Nomenclature Unsaturated alcohols The double bond is shown by the infix -en-. The hydroxyl group is shown by the suffix -ol. Number the chain to give OH the lower number. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Physical Properties Figure 8.2 Polarity of the C-O-H bond in methanol. (a) Partial positive charges on carbon and hydrogen and a partial negative charge on oxygen. (b) An electron density map showing the partial negative charge (red) and the partial positive charge (blue). Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Hydrogen Bonding Alcohols associate in the liquid state by hydrogen bonding. Hydrogen bonding: The attractive force between a partial positive charge on hydrogen and a partial negative charge on a nearby oxygen, nitrogen, or fluorine atom. The strength of hydrogen bonding in alcohols is approximately 2 to 5 kcal/mol. Hydrogen bonds are considerably weaker than covalent bonds (for example, 110 kcal/mol for an O–H bond). Nonetheless, hydrogen bonding can have a significant effect on physical properties. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Hydrogen Bonding Figure 8.3 The association of ethanol molecules in the liquid state. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Hydrogen Bonding Erythromycin Problem: Following is a structural formula for Erythromycin A, a widely used antibiotic. See next screen for questions. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Hydrogen Bonding Erythromycin How many hydroxyl groups are present? Classify each as primary, secondary, or tertiary. How many amine groups are present? Classify each as primary, secondary, or tertiary. Four of the hydroxyl groups within Erythromycin A are involved in intramolecular (internal) hydrogen bonding. One of these is pointed out on the structural formula. Note that this hydrogen bond creates a five-membered ring. Locate the other three intramolecular hydrogen bonds and specify the size of the ring created by each. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Hydrogen Bonding Erythromycin Solution: Shown are the four intramolecular hydrogen bonds. They create one six-membered ring and three five-membered rings. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Boiling Points Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Acidity of Alcohols Most alcohols are about the same or slightly weaker acids than water. Aqueous solutions of alcohols have the same pH as that of pure water. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Acidity of Alcohols Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Basicity of Alcohols In the presence of strong acids, the oxygen atom of an alcohol behaves as a weak base. Proton transfer from the strong acid forms an oxonium ion. Thus, alcohols can function as both weak acids and weak bases. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Reaction with Active Metals Alcohols react with Li, Na, K, and other active metals to liberate hydrogen gas and form metal alkoxides. Na is oxidized to Na+ and H+ is reduced to H2. Alkoxides are somewhat stronger bases that OH–. Alkoxides can be used as nucleophiles in nucleophilic substitution reactions. They can also be used as bases in b-elimination reactions. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Conversion of ROH to RX Water-soluble 3° alcohols react very rapidly with HCl, HBr, and HI. Low-molecular-weight 1° and 2° alcohols are unreactive under these conditions. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Conversion of ROH to RX Water-insoluble 3° alcohols react by bubbling gaseous HCl through a solution of the alcohol dissolved in diethyl ether or THF. 1° and 2° alcohols require concentrated HBr and HI to form alkyl bromides and iodides. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Reaction of a 3° ROH with HX 3° Alcohols react with HX by an SN1 mechanism. Step 1: Add a proton. Rapid and reversible proton transfer from the acid to the —OH group. This proton-transfer converts the leaving group from OH–, a poor leaving group, to H2O, a better leaving group. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Reaction of a 3° ROH with HX Step 2: Break a bond to form a stable molecule or ion. Loss of H2O gives a 3° carbocation. Step 3: Reaction of an electrophile and a nucleophile to form a new covalent bond completes the reaction. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Reaction of a 1° ROH with HX 1° alcohols react with HX by an SN2 mechanism. Step 1: Add a proton. Proton transfer to OH converts OH–, a poor leaving group, to H2O a better leaving group. Step 2: Reaction of a nucleophile and an electrophile to form a new covalent bond and break a bond. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Reaction of ROH with HX Reactions are governed by a combination of electronic and steric effects Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Reaction with SOCl2 Thionyl chloride, SOCl2, is the most widely used reagent for conversion of primary and secondary alcohols to alkyl chlorides. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Dehydration of Alcohols An alcohol can be converted to an alkene by elimination of —H and —OH from adjacent carbons (a -elimination). 1° alcohols must be heated at high temperature in the presence of an acid catalyst, such as H2SO4 or H3PO4. 2° alcohols undergo dehydration at somewhat lower temperatures. 3° alcohols often require temperatures at or only slightly above room temperature. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Dehydration of Alcohols examples: Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Dehydration of Alcohols When isomeric alkenes are obtained, the more stable alkene (the one with the greater number of substituents on the double bond) generally predominates (Zaitsev’s rule). Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Dehydration of a 2° Alcohol A three-step mechanism Step 1: Add a proton. Proton transfer from H3O+ to the –OH group converts OH–, a poor leaving group, into H2O, a better leaving group. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Dehydration of a 2° Alcohol Step 2: Break a bond to form a stable molecule or ion. Loss of H2O gives a carbocation intermediate. Step 3: Take a proton away. Proton transfer from an adjacent carbon to H2O gives the alkene and regenerates the acid catalyst. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Dehydration of a 1° Alcohol A two-step mechanism Step 1: Add a proton. Proton transfer from the acid gives an oxonium ion. Step 2: Take a proton away and loss of H2O gives the alkene and regenerates the acid catalyst. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Hydration-Dehydration Acid-catalyzed hydration of an alkene and dehydration of an alcohol are competing processes. Large amounts of water favor alcohol formation. Scarcity of water or experimental conditions where water is removed favor alkene formation. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Oxidation of Alcohols Oxidation of a 1° alcohol gives an aldehyde or a carboxylic acid, depending on the oxidizing agent and experimental conditions. Oxidation of a 2° alcohol gives a ketone. The most common oxidizing agent is chromic acid. Chromic acid oxidation of 1-octanol gives octanoic acid. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Oxidation of Alcohols To oxidize a 1° alcohol to an aldehyde, use pyridinium chlorochromate ( PCC ). PCC oxidation of geraniol gives geranial. Tertiary alcohols are not oxidized by either of these reagents; they are resistant to oxidation. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Ethers - Structure Figure 8.4 The functional group of an ether is an oxygen atom bonded to two carbon atoms. Oxygen is sp3 hybridized with bond angles of approximately 109.5°. In dimethyl ether, the C–O–C bond angle is110.3°. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Ethers - Nomenclature IUPAC The parent alkane is longest carbon chain. Name the -OR group as an alkoxy substituent. Common names: Name the groups bonded to oxygen followed by the word ether. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Ethers - Nomenclature Although cyclic ethers have IUPAC names, their common names are more widely used. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Ethers - Physical Properties Figure 8.5 Ethers are polar molecules. Each C-O bond is polar covalent. However, only weak attractive forces exist between ether molecules in the pure liquid. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Ethers - Physical Properties Table 8.3 Boiling Points and Solubilities in Water of Some Alcohols and Ethers of Comparable Molecular Weight Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Ethers - Physical Properties Figure 8.6 Ethers are hydrogen bond acceptors only. They are not hydrogen bond donors. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Ethers - Physical Properties The effect of hydrogen bonding is illustrated by comparing the boiling points of ethanol and dimethyl ether. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Reactions of Ethers Ethers resemble hydrocarbons in their resistance to chemical reaction. They do not react with strong oxidizing agents such as chromic acid, H2CrO4. They are not affected by most acids and bases at moderate temperatures. Because of their good solvent properties and general inertness to chemical reaction, ethers are excellent solvents in which to carry out organic reactions. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Epoxides Epoxide: A cyclic ether in which oxygen is one atom of a three-membered ring. Ethylene oxide is synthesized from ethylene and O2. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Epoxides Other epoxides can be synthesized from an alkene by oxidation with a peroxycarboxylic acid, RCO3H. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. Reactions of Epoxides Ethers are generally unreactive to aqueous acid. Epoxides, however, react readily because of the angle strain in the three-membered ring. Reaction of an epoxide with aqueous acid gives a glycol. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Other Epoxide Ring Openings The mechanism of acid-catalyzed hydrolysis of an epoxide involves three steps. Step 1: Add a proton Step 2. Reaction of an electrophile and a nucleophile to form a new covalent bond. Step 3. Take away a proton. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Other Epoxide Ring Openings The value of epoxides lies in the number of nucleophiles that will bring about ring opening, and the combinations of functional groups that can be synthesized from them. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Epoxides as Building Blocks Following are structural formulas for two common drugs, each synthesized in part with ethylene oxide as a building block. Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Alcohols, Ethers, and Thiols End Chapter 8 Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.