Bivalent inhibition of human β-tryptase

Slides:



Advertisements
Similar presentations
Volume 13, Pages (November 2016)
Advertisements

Volume 10, Issue 8, Pages (August 2002)
Supplemental Figure 1. Figure legend. Synthesis of 5-Amino-2-hydroxy-benzoic acid 4-(5-thioxo-5H-[1,2]dithiol-3-yl)-phenyl ester (5-ASA-ADT, 4). Reaction.
Structure of the Rho Transcription Terminator
R.Ian Menz, John E. Walker, Andrew G.W. Leslie  Cell 
Bivalent inhibition of human β-tryptase
Structural Basis of the Redox Switch in the OxyR Transcription Factor
Volume 10, Issue 8, Pages (August 2002)
Volume 11, Issue 10, Pages (October 2003)
Volume 11, Issue 10, Pages (October 2004)
Crystal Structure of Maltose Phosphorylase from Lactobacillus brevis
by Alexey Dementiev, Abel Silva, Calvin Yee, Zhe Li, Michael T
Volume 14, Issue 11, Pages (November 2007)
Volume 11, Issue 7, Pages (July 2003)
Volume 4, Issue 11, Pages (November 1996)
Giovanni Settanni, Antonino Cattaneo, Paolo Carloni 
Structure-Based Design of Covalent Siah Inhibitors
Yvonne Groemping, Karine Lapouge, Stephen J. Smerdon, Katrin Rittinger 
Volume 15, Issue 10, Pages (October 2008)
Jean–Michel Pawlotsky, Stéphane Chevaliez, John G. McHutchison 
Volume 8, Issue 12, Pages (December 2001)
Volume 55, Issue 6, Pages (September 2014)
Volume 108, Issue 6, Pages (March 2015)
Ubiquitin Recognition by the Human TSG101 Protein
Volume 8, Issue 4, Pages (April 2001)
Volume 24, Issue 3, Pages (March 2017)
Volume 13, Issue 4, Pages (April 2006)
Volume 10, Issue 1, Pages (January 2003)
Structures of Minimal Catalytic Fragments of Topoisomerase V Reveals Conformational Changes Relevant for DNA Binding  Rakhi Rajan, Bhupesh Taneja, Alfonso.
Kevin G. Hoff, José L. Avalos, Kristin Sens, Cynthia Wolberger 
Volume 21, Issue 5, Pages (May 2014)
Leonardus M.I. Koharudin, Angela M. Gronenborn  Structure 
G. Fiorin, A. Pastore, P. Carloni, M. Parrinello  Biophysical Journal 
Volume 6, Issue 11, Pages (November 1998)
Volume 14, Issue 11, Pages (November 2007)
Volume 9, Issue 5, Pages (May 2002)
Volume 10, Issue 3, Pages (March 2002)
Qian Steven Xu, Rebecca B. Kucera, Richard J. Roberts, Hwai-Chen Guo 
Volume 14, Issue 5, Pages (May 2006)
Edith Schlagenhauf, Robert Etges, Peter Metcalf  Structure 
Side-Chain Conformational Thermodynamics of Aspartic Acid Residue in the Peptides and Achatin-I in Aqueous Solution  Tomohiro Kimura, Nobuyuki Matubayasi,
Volume 19, Issue 9, Pages (September 2011)
Crystal structure of the ternary complex of 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea with NADPH and an active-site inhibitor  Arnold.
Crystal Structure of the DegS Stress Sensor
Masaru Goto, Rie Omi, Noriko Nakagawa, Ikuko Miyahara, Ken Hirotsu 
Volume 16, Issue 4, Pages (April 2009)
Approaches to solving the rigid receptor problem by identifying a minimal set of flexible residues during ligand docking1  Amy C Anderson, Robert H O’Neil,
Volume 11, Issue 9, Pages (September 2004)
Crystal Structure of Saccharopine Reductase from Magnaporthe grisea, an Enzyme of the α-Aminoadipate Pathway of Lysine Biosynthesis  Eva Johansson, James.
Volume 15, Issue 8, Pages (August 2008)
Volume 7, Issue 7, Pages (July 2000)
Binding Structure of Elastase Inhibitor Scyptolin A
Amedeo Caflisch, Martin Karplus  Structure 
Michael A. McDonough, Christopher J. Schofield  Chemistry & Biology 
Structural Role of the Vps4-Vta1 Interface in ESCRT-III Recycling
Volume 106, Issue 5, Pages (March 2014)
The 2.0 å structure of a cross-linked complex between snowdrop lectin and a branched mannopentaose: evidence for two unique binding modes  Christine Schubert.
The Structure of JNK3 in Complex with Small Molecule Inhibitors
Volume 8, Issue 6, Pages (June 2000)
Volume 8, Issue 5, Pages (May 2000)
Volume 10, Issue 4, Pages (April 2003)
Volume 11, Issue 10, Pages (October 2003)
Volume 11, Issue 2, Pages (February 2003)
Volume 15, Issue 6, Pages (June 2008)
Three protein kinase structures define a common motif
Structure of Human Cytosolic Phenylalanyl-tRNA Synthetase: Evidence for Kingdom- Specific Design of the Active Sites and tRNA Binding Patterns  Igal Finarov,
Volume 13, Issue 5, Pages (May 2005)
Volume 126, Issue 4, Pages (August 2006)
Volume 16, Issue 6, Pages (December 2004)
Ribosomal translocation: EF-G turns the crank
Presentation transcript:

Bivalent inhibition of human β-tryptase Norbert Schaschke, Gabriele Matschiner, Frank Zettl, Ulf Marquardt, Andreas Bergner, Wolfram Bode, Christian P Sommerhoff, Luis Moroder  Chemistry & Biology  Volume 8, Issue 4, Pages 313-327 (April 2001) DOI: 10.1016/S1074-5521(01)00011-4

Fig. 1 (A) Ribbon representation of the β-tryptase tetramer. The subunits A, B, C, and D are colored blue, red, green, and yellow, respectively; Asp-189 at the bottom of each S1 pocket is shown as magenta CPK representation. (B) Schematic representation of the tryptase tetramer with inter-S1 subsite distances. Asp-189 at the bottom of each S1 pocket is shown as a red asterisk. Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Fig. 2 (A) Ribbon representation of the β-tryptase tetramer with β-cyclodextrin positioned in the central pore between the tryptase subunits A and D. Asp-189 at the bottom of each S1 pocket is shown as magenta CPK representation, β-cyclodextrin in stick representation, and the sugar units A and D are colored red. (B) Structure of β-cyclodextrin; the sugar units A and D are colored red. Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Scheme 1 Synthesis of 6A,6D-diamino-6A,6D-dideoxy-β-cyclodextrin (6). Reaction conditions: (i) biphenyl-4,4′-disulfonyl chloride, pyridine; (ii) NaN3, N,N-dimethylformamide (DMF); (iii) triphenylphosphine (PPh3), then 25% aqueous ammonia, DMF. Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Scheme 2 Synthesis of 6A,6D-bis[3-(aminomethyl)benzenesulfonylamino]-6A,6D-dideoxy-β-cyclodextrin (8). Reaction conditions: (i) 3-cyanobenzenesulfonyl chloride/NaOH, H2O/acetonitrile; (ii) H2/10% Pd-C, 90% aqueous AcOH. Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Scheme 3 Synthesis of 6A,6D-bis[3-(aminomethyl)benzenesulfonyl-glycyl-amino]-6A,6D-dideoxy-β-cyclodextrin (19) and 6A,6D-bis[3-(aminomethyl)benzenesulfonyl-β-alanyl-amino]-6A,6D-dideoxy-β-cyclodextrin (20); n=1: glycine; n=2: β-alanine. Reaction conditions: (i) 3-cyanobenzenesulfonyl chloride/NaHCO3, H2O/CHCl3; (ii) H2/10% Pd-C, AcOH; (iii) di-tert-butyl dicarbonate ((Boc)2O)/NaHCO3, dioxane/H2O (1:1); (iv) 1 N NaOH, tetrahydrofuran (THF); (v) 6/benzotriazol-1-yloxy-tris(pyrrolidino)-phosphonium hexafluorophosphate (PyBOP)/N,N-diisopropylethylamine (DIEA), DMF; (vi) 90% aqueous trifluoroacetic acid (TFA). Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Scheme 4 Synthesis of 6-[3-(aminomethyl)benzenesulfonyl-glycylamino]-6-deoxy-β-cyclodextrin (24). Reaction conditions: (i) 15/N-ethyl-N′-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC)/1-hydroxybenzotriazole (HOBt), CHCl3; (ii) 1 N NaOH, MeOH/H2O; (iii) 90% aqueous TFA. Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Scheme 5 Synthesis of 6A,6D-bis[3-(aminomethyl)benzoyl-glycyl-amino]-6A,6D-dideoxy-β-cyclodextrin (30). Reaction conditions: (i) 3-cyanobenzoyl chloride/NaHCO3, H2O/CHCl3; (ii) H2/10% Pd-C, AcOH; (iii) (Boc)2O/NaHCO3, dioxane/H2O (1:1); (iv) 1 N NaOH, THF; (v) 6/PyBOP/DIEA, DMF; (vi) 90% aqueous TFA. Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Fig. 3 Titration of β-tryptase (12.5 nM tetramer, i.e. 50 nM active sites) with the bivalent inhibitor 19. Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Fig. 4 X-ray structure of the β-tryptase tetramer in complex with the bivalent inhibitor 19. The tryptase subunits A (green) and D (yellow) are shown in ribbon representation with the amino acid residues of the catalytic triad (Ser-195, His-57, and Asp-102) as stick and ball models. The inhibitor 19 is shown in stick and ball representation, sticks are colored red, C atoms black, O atoms red, N atoms blue, and S atoms yellow. Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Fig. 5 Thermal denaturation of the β-tryptase tetramer and monomer without stabilizing heparin at low salt conditions (150 mM NaCl). Blue: β-tryptase tetramer without inhibitor; black: β-tryptase monomer; green: β-tryptase tetramer in the presence of 1 mM 11; red: β-tryptase tetramer in the presence of 10 μM 19. Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Fig. 6 Thermodynamics of the inhibition of β-tryptase by mono- and bivalent inhibitors. (A) Binding head. (B) Bivalent inhibitor with perfectly fitting, rigid spacer. (C) Bivalent inhibitor with flexible spacer. ΔG°m, ΔH°m and TΔS°m are the free energy, enthalpy, and entropy of monovalent inhibition, respectively; TΔS°trans+rot,m is the translational and rotational entropy of monovalent inhibition; ΔG°b is the free energy of bivalent inhibition, and TΔS°conf is the loss of conformational entropy in the two intramolecular binding events. Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Chemistry & Biology 2001 8, 313-327DOI: (10 Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Chemistry & Biology 2001 8, 313-327DOI: (10 Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)

Chemistry & Biology 2001 8, 313-327DOI: (10 Chemistry & Biology 2001 8, 313-327DOI: (10.1016/S1074-5521(01)00011-4)