Esophageal pressure, airway pressure, and transpulmonary pressure (PL) with PEEP set at 26 cm H2O (same patient as Fig. 24). Esophageal pressure, airway.

Slides:



Advertisements
Similar presentations
ARDS net. ARDSnet Ventilatory Strategy First Stage Calculate predicted body weight x(height in cm-152.4)+50/45.5 Set Mode - VC/AC Set initial TV.
Advertisements

L U N G COMPLIANCE ? Physiology Unit.
CLINICAL UTILITY OF VENTILATOR GRAPHICS
Esophageal pressure measurements in a patient with auto–positive end-expiratory pressure (auto-PEEP). Note that an esophageal pressure decrease of approximately.
Effect of nasal positive expiratory pressure (PEP) on 6-min walk test (6MWT) distance and pre- to post-exercise increase in lung volumes in each individual.
Basic Concepts in Adult Mechanical Ventilation
Measurement of static and dynamic compliance during mechanical ventilation. A tidal volume is delivered, causing a peak in airway pressure; dynamic compliance.
The patient is being ventilated with 2 types of breaths.
The changes in peak flow and inspiratory time between a minimum rise time (first 2 breaths) and a maximum rise time (last 2 breaths), with the Servo-i.
Airway pressure and flow waveforms during constant flow volume control ventilation, illustrating the effect of an end-inspiratory breath-hold. Airway pressure.
Trigger pressure-time product (PTP) with zero pressure support, with no leak, medium leak, and large leak. Trigger pressure-time product (PTP) with zero.
Relationship between the recruited volume and the arithmetic mean of the ratios of lung density at PEEP 15 cm H2O to lung density at PEEP 5 cm H2O (μP15/P5)
Air flow during ventilator-supported speech production.
Lung CT images were obtained while tracing the curve in static conditions. Lung CT images were obtained while tracing the curve in static conditions. Note.
Lung simulator diagram of airway pressure release ventilation (APRV): volume (yellow), lung pressure (white), and flow (orange)/time curve. Lung simulator.
Pleural mechanics and the pathophysiology of air leaks
P. Michelet, A. Roch, D. Brousse, X. -B. D'Journo, F. Bregeon, D
Flow chart of pressure support test and spontaneous breathing trial (SBT). Flow chart of pressure support test and spontaneous breathing trial (SBT). The.
Several potential sources of error in esophageal manometry are illustrated in this transverse section of the thorax. Several potential sources of error.
Schematic representation of vertical pleural pressure (Ppl) distribution from the apex to the bases in the upright position and their respective diminishment.
Cuff-pressure changes after the addition of 5 mL and 10 mL of air into the cuff of 3 artificial airways, after initial baseline of 30 cm H2O established.
Even though this patient is undergoing positive-pressure mechanical ventilation, the first 4 breaths have a relatively negative pressure (ie, pressure.
A: Pressure (green) and volume (black)/time curve in airway pressure release ventilation (APRV). A: Pressure (green) and volume (black)/time curve in airway.
An example of delayed cycling during pressure-support ventilation of a patient with COPD, on a Puritan Bennett 7200 ventilator, which has a flow-termination.
Box plots comparing peak inspiratory pressures (PIP) causing the 4 main experimental outcomes: bradycardia, hypotension, asystole, and pneumothorax. Box.
The third breath has a negative deflection (ie, below PEEP) at the end of the mechanical breath (arrow A) associated with a flow increase (arrow B), indicating.
Asynchrony index at baseline and following optimization of pressure support (PS) level (A), and following optimization of mechanical inspiratory time (mechanical.
Likert-scale agreement ratings regarding the use of extubation readiness parameters by pediatric critical care physicians. Likert-scale agreement ratings.
Example airway pressure and rib-cage impedance in a premature infant supported with the biphasic mode of SiPAP (“sigh” positive airway pressure) from the.
Simulated screenshot of flow starvation in volume control continuous mandatory ventilation. Simulated screenshot of flow starvation in volume control continuous.
Characteristics of a pressure-supported breath.
The peak flows (60 L/min) and flow patterns are the same for all the breaths. The peak flows (60 L/min) and flow patterns are the same for all the breaths.
During this tracing of 30 seconds, the ventilator displays that the patient rate is 16 breaths/min. During this tracing of 30 seconds, the ventilator displays.
Comparison of airway pressure release ventilation (APRV) (blue curve) and biphasic positive airway pressure (BIPAP) (black curve). Comparison of airway.
Example of invasive measurement of respiratory pressures.
Illustrated here are several features used to determine that the esophageal balloon is correctly placed in the esophagus. Illustrated here are several.
Typical pressure-time curves during forced expiration against an occluded airway in cystic fibrosis (CF) patients and healthy controls. Typical pressure-time.
Top: Stress index (SI) in a patient early in the course of ARDS
Pressure, flow, volume, and electrical activity of the diaphragm (EAdi) waveforms from a patient on pressure support ventilation, and the presumed pressure.
A 2-min recording showing periodic breathing, stable delivered pressure, and fluctuating oxygen saturation in a premature neonate supported by nasal intermittent.
This tracing depicts 30 seconds of information.
Graphic representation of a dynamic airway pressure scalar during volume control ventilation with a constant inspiratory flow. Graphic representation of.
Work rate as a function of pressurization rate and cycling-off threshold, during pressure-support ventilation of (A) patients with acute lung injury (ALI),
Distribution of the differences between carboxyhemoglobin measured noninvasively (SpCO) versus via blood (HbCO), rounded to the nearest full percentage.
Effect of respiratory mechanics on cycling of pressure support from inhalation to exhalation. Effect of respiratory mechanics on cycling of pressure support.
In supine obese people, the weight of the abdomen pushes against the diaphragm, causing a cranial displacement of the muscle. In supine obese people, the.
Flow, esophageal pressure, airway pressure, and transpulmonary pressure can be used to calculate respiratory system compliance, chest-wall compliance,
Negative pressures calculated with the Rosen and Hillard formula
We connected the supplemental oxygen supply at 3 places: near the ventilator, near the exhalation valve, and on the nasal mask port. We connected the supplemental.
Control circuit for an adaptive pressure targeting scheme (eg, Pressure Regulated Volume Control). Control circuit for an adaptive pressure targeting scheme.
Blom speech cannula. Blom speech cannula. Inspiratory pressure opens the flap valve and closes (expands) the bubble valve, sealing the fenestration so.
Carbon monoxide (CO) delivery system used in animal models and Phase 1 clinical trials. Carbon monoxide (CO) delivery system used in animal models and.
The Boussignac continuous positive airway pressure (CPAP) is a small plastic cylinder that attaches to a face mask. The Boussignac continuous positive.
Control circuit for set-point or dual targeting schemes.
A: Pressure ulcer on the left cheek of a patient after 1 week of prone positioning using a commercially available endotracheal tube (ETT) holder. A: Pressure.
The esophageal balloon catheter is advanced to approximately 60 cm, so the catheter tip is in the stomach, confirmed by gently compressing the abdomen,
Flow, airway pressure, and transversus abdominis electromyogram (EMG) waveforms from a mechanically ventilated patient with COPD receiving pressure-support.
Schematic of mechanisms behind the better recruitment of alveoli with spontaneous breathing. Schematic of mechanisms behind the better recruitment of alveoli.
Components of a patient-triggered mechanical breath.
FEV1 and FVC for the control group (without noninvasive ventilation [NIV]), NIV with an inspiratory pressure (IPAP) of 15 cm H2O and expiratory pressure.
Determinants of patient-ventilator interaction.
Correlation between maximum inspiratory pressure and inspiratory load compensation (ILC) ventilatory variables in the 16 difficult-to-wean subjects, prior.
Airway pressure and flow graphics illustrate delayed cycling.
Ventilation protocol. Ventilation protocol. The PEEP group raised peak inspiratory pressure (PIP) through 5-cm H2O PEEP increments every 2 min while keeping.
Inspiratory load compensation responses before and after inspiratory muscle strength training (IMST) in the unweaned versus weaned subjects, with a 10.
The changes in peak flow and inspiratory time between a minimum rise time (first 2 breaths) and a maximum rise time (last 2 breaths), with the Servo-i.
For inspiratory load compensation testing, this threshold positive expiratory pressure (PEP) training device was inverted and connected to a respiratory.
Difference between mid-frequency ventilation (MFV), volume control continuous mandatory ventilation (VC-CMV), and pressure control CMV (PC-CMV) when frequency.
Average drug doses in the peripheral lung, central lung, and extrathoracic airway; residual drug left in the device; and residual drug that was exhaled.
Representative waveforms for each of the devices tested from which the oscillatory f was counted. Representative waveforms for each of the devices tested.
Presentation transcript:

Esophageal pressure, airway pressure, and transpulmonary pressure (PL) with PEEP set at 26 cm H2O (same patient as Fig. 24). Esophageal pressure, airway pressure, and transpulmonary pressure (PL) with PEEP set at 26 cm H2O (same patient as Fig. 24). A: During expiratory pause. B: During inspiratory pause. C: as shown in the cartoon, the PEEP counterbalancs the Pes (pleural pressure [Ppl]). Note that the same pressure is exerted on the heart and central circulation at the end of exhalation. At the mid-thoracic level (position of the esophageal balloon), the end-inspiratory PL is 10 cm H2O, which is likely safe, despite a plateau pressure (Pplat) of 40 cm H2O. Note that blood pressure (BP) is not affected because there is no increase in Ppl with the addition of PEEP. PIP = peak inspiratory pressure; Ppl = pleural pressure; BP = blood pressure. Dean R Hess Respir Care 2014;59:1773-1794 (c) 2012 by Daedalus Enterprises, Inc.