Volume 24, Issue 17, Pages (September 2014)

Slides:



Advertisements
Similar presentations
Volume 86, Issue 5, Pages (June 2015)
Advertisements

Maturation of a Recurrent Excitatory Neocortical Circuit by Experience-Dependent Unsilencing of Newly Formed Dendritic Spines  Michael C. Ashby, John T.R.
Volume 86, Issue 2, Pages (April 2015)
Volume 32, Issue 3, Pages (November 2001)
Isabella Maiellaro, Martin J. Lohse, Robert J. Kittel, Davide Calebiro 
In Vivo Measurement of Glycine Receptor Turnover and Synaptic Size Reveals Differences between Functional Classes of Motoneurons in Zebrafish  Dawnis.
Volume 92, Issue 6, Pages (December 2016)
Volume 12, Issue 3, Pages (September 2012)
Dmitrij Ljaschenko, Nadine Ehmann, Robert J. Kittel  Cell Reports 
Pathway-Specific Trafficking of Native AMPARs by In Vivo Experience
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss  Neuron 
Volume 20, Issue 24, Pages (December 2010)
Volume 96, Issue 1, Pages e4 (September 2017)
Volume 133, Issue 5, Pages (May 2008)
Hiroshi Makino, Roberto Malinow  Neuron 
Volume 17, Issue 8, Pages (April 2007)
Volume 15, Issue 12, Pages (June 2005)
Postsynaptic PKA Controls Quantal Size and Reveals a Retrograde Signal that Regulates Presynaptic Transmitter Release in Drosophila  Graeme W Davis, Aaron.
Volume 18, Issue 19, Pages (October 2008)
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
Volume 57, Issue 5, Pages (March 2008)
Zhang-Yi Liang, Mark Andrew Hallen, Sharyn Anne Endow  Current Biology 
Postsynaptically Silent Synapses in Single Neuron Cultures
Cell-Specific Retrograde Signals Mediate Antiparallel Effects of Angiotensin II on Osmoreceptor Afferents to Vasopressin and Oxytocin Neurons  Tevye J.
Volume 26, Issue 18, Pages (September 2016)
Volume 66, Issue 5, Pages (June 2010)
HBL-1 Patterns Synaptic Remodeling in C. elegans
A Presynaptic Glutamate Receptor Subunit Confers Robustness to Neurotransmission and Homeostatic Potentiation  Beril Kiragasi, Joyce Wondolowski, Yan.
In Vivo Measurement of Glycine Receptor Turnover and Synaptic Size Reveals Differences between Functional Classes of Motoneurons in Zebrafish  Dawnis.
Heather Heerssen, Richard D. Fetter, Graeme W. Davis  Current Biology 
Einat S. Peled, Zachary L. Newman, Ehud Y. Isacoff  Current Biology 
Visualization of Subunit-Specific Delivery of Glutamate Receptors to Postsynaptic Membrane during Hippocampal Long-Term Potentiation  Hiromitsu Tanaka,
Disparate Postsynaptic Induction Mechanisms Ultimately Converge to Drive the Retrograde Enhancement of Presynaptic Efficacy  Pragya Goel, Xiling Li, Dion.
Dion K. Dickman, Zhiyuan Lu, Ian A. Meinertzhagen, Thomas L. Schwarz 
Volume 74, Issue 1, Pages (April 2012)
Long-Term Depression Properties in a Simple System
Neural Circuit Components of the Drosophila OFF Motion Vision Pathway
PAR-1 Kinase Phosphorylates Dlg and Regulates Its Postsynaptic Targeting at the Drosophila Neuromuscular Junction  Yali Zhang, Huifu Guo, Helen Kwan,
Volume 18, Issue 11, Pages (March 2017)
A Genetic Analysis of Synaptic Development
Volume 52, Issue 4, Pages (November 2006)
Postsynaptic Mad Signaling at the Drosophila Neuromuscular Junction
Xin-hao Wang, Mu-ming Poo  Neuron 
Figure 2 I426K DSYT1 fails to rescue neurotransmitter release in synaptotagmin null mutants I426K DSYT1 fails to rescue neurotransmitter release in synaptotagmin.
Volume 55, Issue 6, Pages (September 2007)
Volume 18, Issue 3, Pages (September 2013)
Volume 74, Issue 3, Pages (May 2012)
Sara K. Donnelly, Ina Weisswange, Markus Zettl, Michael Way 
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
Cecile Bats, Laurent Groc, Daniel Choquet  Neuron 
Volume 53, Issue 2, Pages (January 2007)
Microtubule Severing at Crossover Sites by Katanin Generates Ordered Cortical Microtubule Arrays in Arabidopsis  Quan Zhang, Erica Fishel, Tyler Bertroche,
Xiling Li, Pragya Goel, Joyce Wondolowski, Jeremy Paluch, Dion Dickman 
Irina Chernyakov, Felipe Santiago-Tirado, Anthony Bretscher 
Volume 21, Issue 4, Pages (February 2011)
Volume 24, Issue 13, Pages (July 2014)
Interaxonal Interaction Defines Tiled Presynaptic Innervation in C
Volume 61, Issue 1, Pages (January 2009)
Volume 59, Issue 6, Pages (September 2008)
Volume 78, Issue 3, Pages (May 2013)
Erika D. Nelson, Ege T. Kavalali, Lisa M. Monteggia  Current Biology 
Suzanne Paradis, Sean T Sweeney, Graeme W Davis  Neuron 
Cnn Dynamics Drive Centrosome Size Asymmetry to Ensure Daughter Centriole Retention in Drosophila Neuroblasts  Paul T. Conduit, Jordan W. Raff  Current.
Volume 22, Issue 19, Pages (October 2012)
Volume 49, Issue 3, Pages (February 2006)
Control of a Kinesin-Cargo Linkage Mechanism by JNK Pathway Kinases
Dmitrij Ljaschenko, Nadine Ehmann, Robert J. Kittel  Cell Reports 
Rab3 Dynamically Controls Protein Composition at Active Zones
Sexually Dimorphic unc-6/Netrin Expression Controls Sex-Specific Maintenance of Synaptic Connectivity  Peter Weinberg, Matthew Berkseth, David Zarkower,
Byung-Chang Suh, Karina Leal, Bertil Hille  Neuron 
Presentation transcript:

Volume 24, Issue 17, Pages 2059-2065 (September 2014) Gating Characteristics Control Glutamate Receptor Distribution and Trafficking In Vivo  Astrid G. Petzoldt, Yü-Hien Lee, Omid Khorramshahi, Eric Reynolds, Andrew J.R. Plested, Hanspeter Herzel, Stephan J. Sigrist  Current Biology  Volume 24, Issue 17, Pages 2059-2065 (September 2014) DOI: 10.1016/j.cub.2014.07.051 Copyright © 2014 Elsevier Ltd Terms and Conditions

Figure 1 Modulation of the In Vivo GluRIIA Gating Kinetics Spontaneous and evoked synaptic currents from muscle 6/7 of wild-type and mutated GluRIIA. (A–D) Representative traces of two-electrode voltage-clamp recordings of spontaneous junctional currents mEJC (A) with their (B) mean decay time constant tau (IIA/IIB τ = 7.73 ± 1.52; n = 10; −/IIB τ = 2.95 ± 0.65; n = 10; IIAE783A/IIB τ = 3.36 ± 0.70; n = 10; IIAE783Q/IIB τ = 4.99 ± 1.88; n = 12; IIAK661E/IIB τ = 10.80 ± 2.72; n = 9), (C) amplitude (IIA/IIB −0.93 ± 0.21 nA; n = 10; −/IIB −0.36 ± 0.09 nA; n = 10; IIAE783A/IIB −0.46 ± 0.05 nA; n = 10; IIAE783Q/IIB −0.52 ± 0.12 nA; n = 12; IIAK661E/IIB −0.73 ± 0.19 nA; n = 9), and (D) current flow (IIA/IIB −8.37 ± 3.06 pC; n = 10; −/IIB −1.17 ± 0.43 pC; n = 10; IIAE783A/IIB −1.76 ± 0.46 pC; n = 10; IIAE783Q/IIB −2.76 ± 1.19 pC; n = 12; IIAK661E/IIB −8.36 ± 3.83 pC; n = 9). (E–H) Evoked excitatory junctional currents (eEJCs), (E) representative traces, (F) mean decay time constant tau (IIA/IIB τ = 4.70 ± 0.78; n = 13; −/IIB τ = 3.32 ± 0.45; n = 18; IIAE783A/IIB τ = 3.11 ± 0.30; n = 12; IIAE783Q/IIB τ = 3.78 ± 0.64; n = 13; IIAK661E/IIB τ = 8.74 ± 1.39; n = 9), (G) amplitude (IIA/IIB −110.98 ± 25.59 nA; n = 13; −/IIB −79.15 ± 18.70 nA; n = 18; IIAE783A/IIB −88.13 ± 27.20 nA; n = 12; IIAE783Q/IIB −101.62 ± 15.16 nA; n = 13; IIAK661E/IIB −93.28 ± 22.49 nA; n = 9), and (H) current flow (IIA/IIB −923 ± 247 pC; n = 13; −/IIB −484.92 ± 127.60 pC; n = 18; IIAE783A/IIB −505.41 ± 169.84 pC; n = 12; IIAE783Q/IIB −685.69 ± 145.34 pC; n = 13; IIAK661E/IIB −1285.39 ± 279.36 pC; n = 9). The GluRIIAK661E mutant has an increased decay time constant and an increased charge transfer through the receptor for eEJCs in accordance with its predicted slow desensitizing kinetics. The GluRIIAE783A mutant shows spontaneous and evoked current similar to expressing the GluRIIB genomic construct alone, while GluRIIAE783Q shows an intermediate phenotype, both consistent with the predicted fast or moderately fast decay kinetics (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; all error bars represent SEM; see also Figure S2). Current Biology 2014 24, 2059-2065DOI: (10.1016/j.cub.2014.07.051) Copyright © 2014 Elsevier Ltd Terms and Conditions

Figure 2 Segregation at Single PSD Level Correlates with GluR Kinetics (A–D) Confocal images of third-instar larval NMJs (muscle 4). Coexpression of GFP-tagged wild-type GluRIIA, GluRIIAK661E, GluRIIAE783A, GluRIIAE783Q with control wild-type GluRIIA-RFP tagged. (E) Quantified segregation strength (S) (see also Figures S3D–S3O and Supplemental Experimental Procedures). While GluRIIAK661E expression levels are reduced (Figures S3A–S3C), it shows at the level of single PSDs a distribution similar to the control GluRIIA (GluRIIA/GluRIIA S = 0.87 ± 0.04; n = 20; GluRIIAK661E S = 0.86 ± 0.05; n = 11). GluRIIAE783A strongly segregates from the wild-type receptor (S = 1.92 ± 0.14; n = 13), while GluRIIAE783Q again shows an intermediate phenotype (S = 1.27 ± 0.06; n = 11). CTD swapping with GluRIIB does not affect the original segregation strength of mutants: GluRIIAE783Q S = 1.27 ± 0.06 versus GluRIIAE783Q-IIBtail S = 1.33 ± 0.1, p = n.s.; GluRIIAE783A S = 1.92 ± 0.14 versus GluRIIAE783A-IIB-tail S = 2.12 ± 0.1, p = ns (see also Figures S4A–S4C). (F) Quantified segregation strength of GluRIIAE783A upon the concomitant expression of the tetanus toxin light chain (TNT). The segregation mechanism is sensitive to the presynaptic neurotransmitter release as its prevention causes a significant reduction of the segregation between the wild-type and the mutated receptors. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; all error bars represent SEM. Current Biology 2014 24, 2059-2065DOI: (10.1016/j.cub.2014.07.051) Copyright © 2014 Elsevier Ltd Terms and Conditions

Figure 3 In Vivo Imaging and FRAP during Synapse Formation and Maturation (A and B) Coexpression of GluRIIAE783A-GFP and GluRIIA-RFP in third-instar NMJs of muscle 26/27 imaged in vivo at time point 0 hr and reimaged after 24 hr. Red circles enclose young PSDs at time point 0 hr showing predominantly the green signal of GluRIIAE783A-GFP, but accumulate the RFP-tagged wild-type receptor within the following 24 hr (yellow at 24 hr). Newborn PSDs (younger than 24 hr) or not detectable at 0 hr appear as small, green PSDs after 24 hr (white circles). (C–F) Receptor distribution of individual PSDs plotted against the normalized PSD size for GluRIIAE783A-GFP/GluRIIA-RFP over 24 hr. Shown are receptors at 0 hr (C) and 24 hr (D), the newly formed receptors at 24 hr (E), and the additive graph of both old and new receptors (F). (G and H) Fluorescence recovery after photobleaching for control, GluRIIAE783A, and GluRIIAK661E-GFP with a recovery time of 7 hr (G; see also Figures S4H and S4I) and quantification (H). While both fluorophores of the control GluRIIA-GFP/GluRIIA-RFP and GluRIIAK661E-GFP/GluRIIA-RFP recovered equally (GluRIIA-RFP 44% ± 5.7%; GluRIIA-GFP 42% ± 5%; n = 18 and GluRIIA-RFP 22.8% ± 3.7%; GluRIIAK661E-GFP 20.7% ± 3.3%; n = 7), the GluRIIAE783A-GFP receptor recovered faster than the control GluRIIA-RFP (GluRIIA-RFP 31% ± 1.9%; GluRIIAE783A-GFP 55% ± 4.4%, n = 9), indicating a higher mobility of the fast-gating GluR. The GFP/RFP ratio of the recovered fluorescence signal after 7 hr showing a 2-fold mobility increase for GluRIIAE783A compared to wild-type GluRIIA. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; all error bars represent SEM. Current Biology 2014 24, 2059-2065DOI: (10.1016/j.cub.2014.07.051) Copyright © 2014 Elsevier Ltd Terms and Conditions

Figure 4 Accumulation of Control but Not Fast-Gating GluRIIA Scales with Presynaptic Bruchpilot (A) Confocal imaging of third instar larvae (muscle 4) coexpressing GluRIIAE783A-GFP /GluRIIA-RFP costained for BRP (magenta). GluRIIA-RFP-rich PSDs (arrowheads) are found opposed to BRP-rich active zones. No such correlation was observed for GluRIIAE783A-GFP. (B and C) GluR density of single PSDs scattered against the BRP densities (n = 583 PSDs from 4 NMJs). A high correlation for GluRIIA-RFP (r = 0.61) (B), although no correlation was found for GluRIIAE783A-GFP (r = 0.05) (C). (D) Correlation of GluRIIA-RFP and BRP is significantly higher than the correlation of GluRIIAE783A-GFP and BRP (n = 4 NMJs). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; all error bars represent SEM. Current Biology 2014 24, 2059-2065DOI: (10.1016/j.cub.2014.07.051) Copyright © 2014 Elsevier Ltd Terms and Conditions