Bhawin Dhital Thanks to :

Slides:



Advertisements
Similar presentations
Nominal and no CSR (R 56-1 = 55 mm, R 56-2 = 59 mm, R 56-3 = 0) L1 phase = 21 deg, V 3.9 = 55 MV CSR OFF BC3 OFF Elegant Tracking  z1 = mm (post.
Advertisements

ILC Accelerator School Kyungpook National University
J. Rudolph, Helmholtz-Zentrum Berlin EuCARD 2nd ANNUAL MEETING Slice emittance measurements at the ELBE superconducting RF photoinjector.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Bunch length modulation in storage rings C. Biscari LNF – INFN - Frascati Workshop on “Frontiers of short bunches in storage rings” – Frascati – 7-8 Nov.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Linear Collider Bunch Compressors Andy Wolski Lawrence Berkeley National Laboratory USPAS Santa Barbara, June 2003.
PSB magnetic cycle 160 MeV to 2 GeV with 2.5E13 protons per ring A. Blas 2 GeV magnetic cycle 29/04/ Requirements 1.Present performance: 1E13p from.
July 22, 2005Modeling1 Modeling CESR-c D. Rubin. July 22, 2005Modeling2 Simulation Comparison of simulation results with measurements Simulated Dependence.
Impedance measurements at SLS E. Koukovini-Platia CERN, EPFL TIARA mid-term meeting, Madrid, 13 th June 2012 Many thanks to M. Dehler, N. Milas, A. Streun.
FFAG-ERIT R&D 06/11/06 Kota Okabe (Kyoto Univ.) for FFAG-DDS group.
22/03/1999A.Blas1 Hollow bunches A. Blas, S. Hancock, S. Koscielniak, M. Lindroos, F. Pedersen, H. Schonauer  Why: to improve space charge related problems.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 Lecture 15  Radiation Damping Radiation Damping USPAS,
Ajit Kurup, C. Bontoiu, M. Aslaninejad, J. Pozimski, Imperial College London. A.Bogacz, V. S. Morozov, Y.R. Roblin Jefferson Laboratory K. B. Beard, Muons,
BEPCII Transverse Feedback System Yue Junhui IHEP , Beijing Sep 17 th, 08IMAC.
June 14th 2005 Accelerator Division Overview of ALBA D. Einfeld Vacuum Workshop Barcelona, 12 th -13 th September 2005 General 10 th September 2005.
Particle dynamics in electron FFAG Shinji Machida KEK FFAG04, October 13-16, 2004.
Overview of ERL MEIC Cooler Design Studies S.V. Benson, Y. Derbenev, D.R. Douglas, F. Hannon, F. Marhauser, R. A Rimmer, C.D. Tennant, H. Zhang, H. Wang,
1 Advances for a Solenoid/Dipole 6D Cooling Ring X. Ding, UCLA Muon Accelerator Program-Winter Meeting Jefferson Lab 3/1/11.
BEPCII Transverse Feedback System Yue Junhui Beam Instrumentation Group IHEP , Beijing.
The SPS as a Damping Ring Test Facility for CLIC March 6 th, 2013 Yannis PAPAPHILIPPOU CERN CLIC Collaboration Working meeting.
R.SREEDHARAN  SOLEIL main parameters  Booster and storage ring low level RF system  New digital Booster LLRF system under development  Digital LLRF.
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy Effects of Impedance in Short Pulse Generation Using.
Canadian Light Source Commissioning Progress CLS Annual Users Meeting –
Damping of Coupled-bunch Oscillations with Sub-harmonic RF Voltage? 1 H. Damerau LIU-PS Working Group Meeting 4 March 2014.
July LEReC Review July 2014 Low Energy RHIC electron Cooling Jorg Kewisch, Dmitri Kayran Electron Beam Transport and System specifications.
Longitudinal aspects on injection and acceleration for HP-PS Antoine LACHAIZE On behalf of the HP-PS design team.
Progress Report on the Ultra-fast Harmonic Kicker Cavity Design and Beam Dynamic Simulation Yulu Huang 1,2 H. Wang 1, R. A. Rimmer 1, S. Wang 1 1.Thomas.
Weiming Guo Accelerator Physics Group / ASD Advanced Photon Source
CEPC APDR Study Zhenchao LIU
Cavity-beam interaction and Longitudinal beam dynamics for CEPC DR&APDR 宫殿君
PSB rf manipulations PSB cavities
The Strong RF Focusing:
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
R. Bartolini Diamond Light Source Ltd
Analysis of Multi-Turn ERLs for X-ray Sources
CEPC Injector Damping Ring
LHC (SSC) Byung Yunn CASA.
ICFA Mini-Workshop, IHEP, 2017
Physics Design on Injector I
Status of the ASTRID2 RF systems
Low Emittance Lattices
Radiation Damping S.A. Bogacz, G.A. Krafft, S. DeSilva and R. Gamage
Coherent Synchrotron Radiation Study
Radiation Damping - Low emittance lattices
Some Issues on Beam-Beam Interaction & DA at CEPC
PSB magnetic cycle 900 ms MeV to 2 GeV
Injection design of CEPC
RF Parameters Calculation for JLEIC Colliders (e Ring)
Update on ERL Cooler Design Studies
Robinson Instability Criteria for MEIC e Ring
Parameters Changed in New MEIC Design
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
RF Parameters for New 2.2 km MEIC Design
Fast kicker beam dynamics simulations
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Update on Crab Cavity Simulations for JLEIC
Alejandro Castilla CASA/CAS-ODU
JLEIC Weekly R&D Meeting
Ya. Derbenev JLEIC R&D meeting CASA Jefferson Laboratory
MEIC Alternative Design Part V
Possibility of MEIC Arc Cell Using PEP-II Dipole
HE-JLEIC: Do We Have a Baseline?
MEIC R&D Meeting, JLab, August 20, 2014
EQUILIBRIA AND SYNCHROTRON STABILITY IN TWO ENERGY STORAGE RINGs*
Optimization of JLEIC Integrated Luminosity Without On-Energy Cooling*
3.2 km FODO lattice for 10 Hz operation (DMC4)
JLEIC electron ring with damping wigglers
Presentation transcript:

Two Energy Storage Ring Cooler : Equilibrium and Longitudinal Stability Bhawin Dhital Thanks to : David Douglas, J. Delayen, S. Derbenev, G. A. Krafft, F. Lin, V. Morozov, Y. Zhang

Dual Energy Storage Ring : Schematic Diagram F. Lin et.al, IPAC2016, Busan, Korea

SR Mode and ERL Mode RF voltage phasor Accelerating and decelerating slopes 𝜙 𝑠,𝑑 =𝜋± 𝜙 𝑠,𝑎 (W/R) In SR language, Synchronous phase is usually referenced to zero crossing phase in the cavity (A). 𝜙 𝑠,𝑑 =𝜋± 𝜙 𝑠,𝑎 +𝛿𝜙 (WR) 𝛿𝜙=−Δ𝐸/(𝑉 sin 𝜋± 𝜙 𝑠,𝑎 ‘+’ for ERL mode, ‘-’ for SR mode

Stability in Two Energy Storage Rings To the linear order, one turn transfer matrix in (Δ𝜙, Δ𝐸) For SR equilibrium (Radiation off) 𝑀 𝑆𝑅 = 1 ℎ 𝐿 / 𝐸 𝐿 0 1 1 0 −𝑉 𝑠𝑖𝑛 Φ 𝑠,𝑑 1 1 ℎ 𝐻 / 𝐸 𝐻 0 1 1 0 −𝑉 𝑠𝑖𝑛 Φ 𝑠,𝑎 1 μ 𝑆𝑅 = 2( ℎ 𝐿 𝑉 𝑠𝑖𝑛 Φ 𝑠,𝑎 𝐸 𝐿 + ℎ 𝐻 𝑉 𝑠𝑖𝑛 Φ 𝑠,𝑎 𝐸 𝐻 ) , where ℎ 𝐻 = 2πℎ 𝑓 0 𝐿 𝐻 η 𝐻 ᵦ 𝐻 3 𝑐 For ERL equilibrium (Radiation off) 𝑀 𝐸𝑅𝐿 = 1 ℎ 𝐿 / 𝐸 𝐿 0 1 1 0 −𝑉 𝑠𝑖𝑛 Φ 𝑠,𝑑 1 1 ℎ 𝐻 / 𝐸 𝐻 0 1 1 0 −𝑉 𝑠𝑖𝑛 Φ 𝑠,𝑎 1 μ 𝐸𝑅𝐿 = ℎ 𝐿 ℎ 𝐻 𝑉 2 sin 2 Φ 𝑠,𝑎 𝐸 𝐿 𝐸 𝐻 , 𝑄 𝑠 = 𝜇 2 𝜋 Schematic diagram of TESR

Stability/Synchrotron Tune SR Mode (W/R) ERL Mode (W/R) SR Mode (WR) ERL Mode(WR) 𝑄 𝑠 (simulation) 0.03448 0.001627 0.03415 0.001631 𝑄 𝑠 (calculation) 0.001592 % difference 0.9 0.2 2.4 SR Mode (W/R) ERL Mode(W/R) SR Mode (WR) ERL Mode(WR) *W/R = Without Radiation, *WR = With Radiation

Stability and Synchrotron Tune First we take a simple ring ( DBA1, CAV(acc), DBA2, CAV(dec)) We take 𝐸 𝐻 = 25.010 GeV, 𝐸 𝐿 = 25.0 GeV (ERL tune) We take 𝐸 𝐻 = 35.0 MeV, 𝐸 𝐿 = 25 MeV ( No synchrotron radiation) We take 𝐸 𝐻 = 155.0 MeV, 𝐸 𝐿 = 55.0 MeV Introduce artificial damping in HER (elegant simulation) Two energy real lattice length ≈ 3500.0 m. Damped emittance …..simulation time. Decided to work with Matrix element in elegant simulation Periodic Solution and longitudinal stability

Periodic Solution One turn transfer matrix (Linear) Calculate the stability criteria Calculate twiss parameters ( 𝛼 𝑠 , 𝛽 𝑠 , 𝛾 𝑠 ) and use these values in elegant simulations. Periodic solution exists for both SR mode and ERL mode RF accelerating phase 𝜙 𝑠,𝑎 depends on RF wavelength 𝜆 𝑟𝑓 tan −1 Δ𝑃 𝜋 𝐵 𝑀 56 𝑃 2 𝜆 𝑟𝑓 < 𝜙 𝑠,𝑎 < tan −1 −Δ𝑃 𝜋 𝐵 𝑀 56 𝑃 2 𝜆 𝑟𝑓 B = 𝑃 2 𝑃 1 , A = 2(1 + B)/B, 𝑃 2 = 155 MeV, 𝑃 1 = 55 MeV

Longitudinal Stability ( SR Mode) We calculate one turn transfer matrix and apply |2 cos𝜇 | ≤ 2 𝜙 𝑠,𝑎 versus 𝜆 𝑟𝑓 plot for SR mode. Blue region (stable) 𝑓 0 = 476 MHz ( 𝜆 𝑟𝑓 = 0.6298 m),| 𝑀 56 | = 1.0 m 𝜙 𝑠,𝑎 1 = 107.00 0 − 112.51 0 107.00 0 − 112.51 0 𝜙 𝑠,𝑎 2 = 90 0 − 96.19 0

Longitudinal Stability (ERL Mode) 𝜙 𝑠,𝑎 versus 𝜆 𝑟𝑓 plot for ERL mode. Blue region (stable) 𝑓 0 = 476 MHz, ( 𝜆 𝑟𝑓 = 0.6298 m) ,| 𝑀 56 | = 1.0 m, 79.67 0 < 𝜙 𝑠,𝑎 1 < 90 0 90 0 < 𝜙 𝑠,𝑎 2 < 100.32 0

Periodic Solution ( 𝝓 𝒔,𝒂 =𝟗 𝟓 𝟎 , 𝝀 𝒓𝒇 =𝟎.𝟔𝟐9816 m) SR mode, Δ𝑧=1.82 mm, Δ𝑝 𝑝 =3.10× 10 −3 𝛽 𝑠 =1.1360383 m, 𝛼 𝑠 = - 1.603617594 ( After decelerating cavity, cooler ring) ERL mode, Δ𝑧=1.68 mm, Δ𝑝 𝑝 =1.79× 10 −3 𝛽 𝑠 =0.950411643 m, 𝛼 𝑠 = - 0.13961113 (After decelerating cavity, cooler ring) ERL mode SR mode

Periodic Solution / Chirping – De-Chirping We define one loop transfer matrix, find out 𝛼 𝑠 and 𝛽 𝑠 at point A. 𝑀 𝑡𝑜𝑡𝑎𝑙 = 𝑀 𝑑𝑒−𝑐ℎ𝑖𝑟𝑝𝑒𝑟 𝑀 56 1 𝑀 𝑑𝑒𝑐 𝑀 56 𝐻𝐸 𝑀 𝑎𝑐𝑐 𝑀 56 2 𝑀 𝑐ℎ𝑖𝑟𝑝𝑒𝑟

SR Mode, 𝝓 𝒔,𝒂 =𝟏𝟏 𝟐 𝟎 , Volt = 100.0 kV Δ𝑧= 0.73 mm Δ𝑝 𝑝 =4.061× 10 −3

Chirping / De – Chirping (SR Mode) Voltage scanning shows that for the smaller 𝑀 56 values, higher cavity voltage is required for chirping and de-chirping. Higher value of chirper and de-chirper cavity voltage destroy the periodic solution.

𝑴 𝟓𝟔 and RF Acceleration, 𝝀 𝒓𝒇 = 0.6298 m fixed Ref: IPAC2019

Two cavities model Dr Vasilily suggestion: use two cavity ( For both acceleration and deceleration) to remove more chirping introduced by a single cavity.

𝝈 𝒔 versus 𝑴 𝟔𝟓 𝒂𝒄𝒄 (𝒕𝒐𝒕), 𝚫𝝓=𝟎.𝟎𝟎𝟎 𝟏 𝟎

𝝈 𝒔 versus 𝑴 𝟔𝟓 (𝒕𝒐𝒕), 𝚫𝝓=𝟎.𝟎𝟎𝟎 𝟏 𝟎

𝝈 𝒔 versus 𝝈 𝜹 𝚫𝝓=𝟎.𝟎𝟎𝟎 𝟏 𝟎

𝜷 𝒔 versus 𝚫𝝓 Red = 15deg, BLUE = 30 deg, Green = 45 deg, Black = 60 deg, Yellow = 75 deg

ERL Mode, 𝝓 𝒔,𝒂 =𝟔 𝟎 𝟎 , 𝚫𝝓=𝟎.𝟎𝟎𝟎 𝟏 𝟎 Δ𝑧 = 0.025 m, Δ𝑝 𝑝 =4.64× 10 −5

Summary Longitudinal stability exists in Two Energy Storage Rings. Periodic solution exists. Optimization of cooler parameters are in progress. Acknowledgement - All CASA members - Dr Morozov

Thank You !