G. Wei, V.S. Morozov, Fanglei Lin

Slides:



Advertisements
Similar presentations
Dynamic Aperture Study for the Ion Ring Lattice Options Min-Huey Wang, Yuri Nosochkov MEIC Collaboration Meeting Fall 2015 Jefferson Lab, Newport News,
Advertisements

Chromaticity Correction & Dynamic Aperture in MEIC Ion Ring Fanglei Lin MEIC Detector and Interaction Region Designing Mini-Workshop, Oct. 31, 2011.
Optimization of Field Error Tolerances for Triplet Quadrupoles of the HL-LHC Lattice V3.01 Option 4444 Yuri Nosochkov Y. Cai, M-H. Wang (SLAC) S. Fartoukh,
Preliminary MEIC Ion Beam Formation Scheme Jiquan Guo for the MEIC design study team Oct. 5,
Compensation of Detector Solenoid G.H. Wei, V.S. Morozov, Fanglei Lin JLEIC Collaboration Meeting Spring, 2016.
MCS meeting 20/11/2015 S. Guiducci. Introduction Yesterday meeting has shown an interest in a large physics community to incremental development of muon.
JLEIC simulations status April 3rd, 2017
Ion Collider Ring: Design and Polarization
JLEIC Forward Ion Detection Region
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
First Look at Nonlinear Dynamics in the Electron Collider Ring
Electron collider ring Chromaticity Compensation and dynamic aperture
Nonlinear Dynamics and Error Study of the MEIC Ion Collider Ring
Error and Multipole Sensitivity Study for the Ion Collider Ring
Specifications for the JLEIC IR Magnets
Update on JLEIC Interaction Region Design
EIC Accelerator Collaboration Meeting
Optimization of partial double ring optics
JLEIC Collaboration meeting Spring 2016 Ion Polarization with Figure-8
Ion Collider Ring Chromatic Compensation and Dynamic Aperture
Polarized Positrons in JLEIC
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Multipole Limit Survey of FFQ and Large-beta Dipole
Vertical Dogleg Options for the Ion Collider Ring
Electron Ring IP Region Optics
JLEIC Collider Rings’ Geometry Options
Progress on Non-linear Beam Dynamic Study
Update on MEIC Nonlinear Dynamics Work
JLEIC Weekly R&D Meeting
IR Magnet Design and Engineering Considerations
Update on MEIC Nonlinear Dynamics Work
Summary of Working Group 1
JLEIC High-Energy Ion IR Design: Options and Performance
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Status and plans for crab crossing studies at JLEIC
Alternative Ion Injector Design
Ion ring lattice with -I sextupole pairs for ir chromaticity correction Y. Nosochkov, M-H. Wang
First Look at Error Sensitivity in MEIC
Fanglei Lin, Yuri Nosochkov Vasiliy Morozov, Yuhong Zhang, Guohui Wei
Update on JLEIC Electron Ring Design
Multipole Limit Survey of FFQ and Large-beta Dipole
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC)
Compensation of Detector Solenoids
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
JLEIC Collider Rings’ Geometry Options (II)
Multipole Limit Survey of Large-beta Dipoles
Integration of Detector Solenoid into the JLEIC ion collider ring
Basic Error & Multipole Error for MEIC Ion Ring
Discussions on DA with tune scan
G. Wei, V.S. Morozov, Fanglei Lin MEIC R&D Meeting, JLab, Oct 27, 2015
Status of IR / Nonlinear Dynamics Studies
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Upgrade on Compensation of Detector Solenoid effects
Status of Proton & Deuteron Spin Tracking in Racetrack Booster
HE-JLEIC: Do We Have a Baseline?
Crab Crossing Named #1 common technical risk (p. 6 of the report)
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
Summary of JLEIC Electron Ring Nonlinear Dynamics Studies
JLEIC Accelerator R&D Meeting Reorganization
Integration of Detector Solenoids
Chromaticity correction in e-ring with TME cells and –I sextupole pairs in arcs Y. Nosochkov 28 February 2017.
Summary and Plan for Electron Polarization Study in the JLEIC
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
A TME-like Lattice for DA Studies
Error Sensitivity in MEIC
Option 1: 2257 m Electron Ring with Doglegs – Downstream of IP
Compensation of Detector Solenoid Coherent Orbit Correction
Update on DA Studies for a TME-like Lattice
Illustrations of Beam Synchronization Issue
Update for ion ring lattice chromaticity correction
Presentation transcript:

Dynamic aperture with tune scan & selection of working point (Ion collider ring) G. Wei, V.S. Morozov, Fanglei Lin Yuri M. Nosochkov, Min-Huey Wang (SLAC) JLEIC Accelerator R&D Meeting, JLab, June 8, 2017 F. Lin

dynamic aperture with tune scan. Current working point (24.22, 23.16) 3 line scan, then make a map for each line Tune scan range (24.0, 23.0)  (24.5, 23.5) (24.03, 23.03)  (24.47, 23.47) Basic DA scan method

dynamic aperture with tune scan. Step: 0.02 Step: 0.01

dynamic aperture with tune scan. 24.22, 23.16 24.1, 23.14

dynamic aperture with tune scan. 24.22, 23.16 24.1, 23.14

dynamic aperture with tune scan. 24.1, 23.14 24.1, 23.14 dp/p ±0.3% ~ 10 

dynamic aperture with tune scan. 24.1, 23.14 24.22, 23.16

dynamic aperture with tune scan. 24.22, 23.16 24.1, 23.14

FMA (Frequency Map Analysis) 24.1, 23.14 24.22, 23.16

dynamic aperture with tune scan. 24.1, 23.14 24.22, 23.16

dynamic aperture with tune scan. 24.22, 23.16 24.1, 23.14

Summary Dynamic aperture with tune scan was done. After surveying in two suitable area, A new working point (24.1, 23.14) was compared with current tune (24.22, 23.16). The new working point (24.1, 23.14) has a bigger DA, but the current working point (24.22, 23.16) has a stable DA for momentum offset.

Dynamic Aperture Map of Tune Scan Problem: Area VS. lines (Xmax, Ymax)

DA with detector solenoid & FFQ multipoles