F-Actin-Driven CD28-CD80 Localization in the Immune Synapse

Slides:



Advertisements
Similar presentations
Volume 107, Issue 12, Pages (December 2014)
Advertisements

Volume 15, Issue 3, Pages (April 2016)
Tradeoffs between Dense and Replicate Sampling Strategies for High-Throughput Time Series Experiments  Emre Sefer, Michael Kleyman, Ziv Bar-Joseph  Cell.
The State Diagram for Cell Adhesion Mediated by Two Receptors
Koichiro Uriu, Luis G. Morelli  Biophysical Journal 
Volume 23, Issue 3, Pages (April 2018)
Volume 27, Issue 1, Pages (July 2007)
Phage Mu Transposition Immunity: Protein Pattern Formation along DNA by a Diffusion- Ratchet Mechanism  Yong-Woon Han, Kiyoshi Mizuuchi  Molecular Cell 
Volume 31, Issue 1, Pages (July 2009)
Volume 115, Issue 4, Pages (November 2003)
Volume 25, Issue 1, Pages (July 2006)
Volume 24, Issue 15, Pages (August 2014)
Volume 112, Issue 6, Pages (March 2017)
Volume 39, Issue 5, Pages (November 2013)
Tianhui Maria Ma, J. Scott VanEpps, Michael J. Solomon 
Reversible Phosphorylation Subserves Robust Circadian Rhythms by Creating a Switch in Inactivating the Positive Element  Zhang Cheng, Feng Liu, Xiao-Peng.
Volume 3, Issue 5, Pages (May 2013)
Volume 36, Issue 2, Pages (January 2016)
Volume 67, Issue 5, Pages e4 (September 2017)
Volume 94, Issue 8, Pages (April 2008)
Andrey S. Shaw, Michael L. Dustin  Immunity 
Volume 92, Issue 1, Pages (January 2007)
Volume 18, Issue 20, Pages (October 2008)
Cytoskeletal Regulation Couples LFA-1 Conformational Changes to Receptor Lateral Mobility and Clustering  Christopher W. Cairo, Rossen Mirchev, David E.
Volume 21, Issue 13, Pages (December 2017)
Volume 18, Issue 9, Pages (September 2010)
Single-Molecule Analysis Reveals Differential Effect of ssDNA-Binding Proteins on DNA Translocation by XPD Helicase  Masayoshi Honda, Jeehae Park, Robert.
Volume 26, Issue 4, Pages (April 2018)
Immunological Synapse: Center of Attention Again
Alexander J. Sodt, Richard W. Pastor  Biophysical Journal 
Reciprocal TCR-CD3 and CD4 Engagement of a Nucleating pMHCII Stabilizes a Functional Receptor Macrocomplex  Caleb R. Glassman, Heather L. Parrish, Mark.
Volume 31, Issue 1, Pages (July 2009)
Volume 20, Issue 1, Pages (July 2017)
Volume 24, Issue 6, Pages (June 2016)
The Multiple Mechanisms of T Cell Receptor Cross-reactivity
αβ T Cell Receptor Ligand-Specific Oligomerization Revisited
Volume 102, Issue 2, Pages (January 2012)
Michael W. Gramlich, Vitaly A. Klyachko  Cell Reports 
Daniel Coombs, Micah Dembo, Carla Wofsy, Byron Goldstein 
Signaling Takes Shape in the Immune System
Stop and Go Traffic to Tune T Cell Responses
Volume 2, Issue 6, Pages (December 2012)
Tyrone J. Yacoub, Allam S. Reddy, Igal Szleifer  Biophysical Journal 
Michael S. Kuhns, Mark M. Davis  Immunity 
Ion-Induced Defect Permeation of Lipid Membranes
Modeling of the RAG Reaction Mechanism
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Volume 13, Issue 8, Pages (November 2015)
Volume 49, Issue 3, Pages e4 (September 2018)
Volume 31, Issue 4, Pages (October 2009)
Small Angle X-Ray Scattering Studies and Modeling of Eudistylia vancouverii Chlorocruorin and Macrobdella decora Hemoglobin  Angelika Krebs, Helmut Durchschlag,
Volume 20, Issue 5, Pages (May 2004)
Volume 24, Issue 4, Pages (July 2018)
Cytoskeletal Control of Antigen-Dependent T Cell Activation
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Volume 11, Issue 3, Pages (April 2015)
Christina Ketchum, Heather Miller, Wenxia Song, Arpita Upadhyaya 
Mechanical Coupling between Myosin Molecules Causes Differences between Ensemble and Single-Molecule Measurements  Sam Walcott, David M. Warshaw, Edward P.
Force as a Facilitator of Integrin Conformational Changes during Leukocyte Arrest on Blood Vessels and Antigen-Presenting Cells  Ronen Alon, Michael L.
Enrique M. De La Cruz, Jean-Louis Martiel, Laurent Blanchoin 
Volume 5, Issue 1, Pages (October 2013)
Heterogeneous MAC Initiator and Pore Structures in a Lipid Bilayer by Phase-Plate Cryo-electron Tomography  Thomas H. Sharp, Abraham J. Koster, Piet Gros 
Matthew R. Roesch, Adam R. Taylor, Geoffrey Schoenbaum  Neuron 
Fine Details of IGF-1R Activation, Inhibition, and Asymmetry Determined by Associated Hydrogen /Deuterium-Exchange and Peptide Mass Mapping  Damian Houde,
Amir Marcovitz, Yaakov Levy  Biophysical Journal 
William J. Galush, Jeffrey A. Nye, Jay T. Groves  Biophysical Journal 
Yuki Hara, Christoph A. Merten  Developmental Cell 
Altered Peptide Ligands Induce Delayed CD8-T Cell Receptor Interaction—a Role for CD8 in Distinguishing Antigen Quality  Pia P. Yachi, Jeanette Ampudia,
αβ T Cell Receptor Ligand-Specific Oligomerization Revisited
Presentation transcript:

F-Actin-Driven CD28-CD80 Localization in the Immune Synapse Anastasios Siokis, Philippe A. Robert, Philippos Demetriou, Michael L. Dustin, Michael Meyer-Hermann  Cell Reports  Volume 24, Issue 5, Pages 1151-1162 (July 2018) DOI: 10.1016/j.celrep.2018.06.114 Copyright © 2018 The Author(s) Terms and Conditions

Cell Reports 2018 24, 1151-1162DOI: (10.1016/j.celrep.2018.06.114) Copyright © 2018 The Author(s) Terms and Conditions

Figure 1 List of Mechanisms Included in the IS Model The membrane of the T cell (blue) and the SLB (pink) carry molecules. Opposite molecules bind or unbind by chemical kinetics. Free and complexed molecules move by diffusion or forces; centripetal forces reflect actin coupling, and SBS represents the effect of membrane bending. Cell Reports 2018 24, 1151-1162DOI: (10.1016/j.celrep.2018.06.114) Copyright © 2018 The Author(s) Terms and Conditions

Figure 2 LFA-1 Coupling to F-actin Induces a Gradient of LFA-1-ICAM-1 Complexes (A) IS formation at 60, 300, and 600 s without (a–c) and with (d–f) LFA-1 attachment to F-actin. TCR-pMHC, green; LFA-1-ICAM-1, red. (B) Radial density profile of complexes along the distance from the center at 600 s, without (solid) or with (dashed) LFA-1 attachment to F-actin. Error bars represent SD. (C and D) Radial distribution functions at 60, 300, and 600 s between pairs of TCR-pMHC (C) and between TCR-pMHC and LFA-1-ICAM-1 complexes (D) with (top) or without (bottom) LFA-1-ICAM-1 actin coupling. Changed parameters compared to Table 1 are shown. In the absence of CD28 and CD80, the fraction of occupied grid points = 42%, TCR and pMHC = 12%, LFA-1 and ICAM-1 = 30%. In (Aa)–(Ac), (CLI = 0.00). Cell Reports 2018 24, 1151-1162DOI: (10.1016/j.celrep.2018.06.114) Copyright © 2018 The Author(s) Terms and Conditions

Figure 3 Effect of CD28-Actin Coupling on the Dynamics of the IS (A) IS formation at 60, 120, 300, and 600 s, with (a–d) or without (e–h) CD28-CD80 coupling to actin, in the presence of an LFA-1 gradient. (B) Radial density profile of complexes along the distance from the center at 600 s, with or without CD28 coupling to actin. Error bars represent SD. (C) Barriers on the APC lattice that block diffusion of molecules and complexes, with or without CD28 coupling to actin at 600 s. TCR-pMHC, green; LFA-1-ICAM-1, red; CD28-CD80, yellow. Changed parameters compared to Table 1 are shown. In (Ae)–(Ah) and (C, bottom row), CCC = 0.00. Cell Reports 2018 24, 1151-1162DOI: (10.1016/j.celrep.2018.06.114) Copyright © 2018 The Author(s) Terms and Conditions

Figure 4 CD28-Actin Coupling Impacts Colocalization of CD28-CD80 and TCR-pMHC (A) Radial distribution function of Figure 3 at 60, 120, 300, and 600 s of IS formation with (CCC = 0.20) or without (CCC = 0.00) CD28 coupling to actin. (B) Short-distance colocalization at less than 210 nm (blue) of CD28-CD80 and TCR-pMHC, with (CCC = 0.20) or without (CCC = 0.00) CD28 coupling to actin. TCR-pMHC, green; LFA-1-ICAM-1, red; CD28-CD80, yellow. Other parameters are as shown in Table 1. Cell Reports 2018 24, 1151-1162DOI: (10.1016/j.celrep.2018.06.114) Copyright © 2018 The Author(s) Terms and Conditions

Figure 5 Variation of the Strength of CD28 Coupling to Actin (A) In (a)-(f), (CCC = 0.00, 0.05, 0.10, 0.20, 0.50, 1.00 = CTM), respectively. TCR-pMHC, green; LFA-1-ICAM-1, red; CD28-CD80, yellow. (B) Amount of CD28-CD80 complexes in the different regions of the IS, cSMAC, ring around the cSMAC, and dSMAC. Error bars represent SD. Other parameters are as shown in Table 1. Cell Reports 2018 24, 1151-1162DOI: (10.1016/j.celrep.2018.06.114) Copyright © 2018 The Author(s) Terms and Conditions

Figure 6 Impact of the LFA-1 Gradient on Free CD28 Molecules in the Absence of the CD80 Ligand (A) Altering LFA-1 actin coupling strength: (a) CLI = 0.00, (b) CLI = 0.05, and (c) CLI = 0.10 at 600 s. TCR-pMHC, green; LFA-1-ICAM-1, red; CD28, yellow. (B) Radial density profile of complexes and free CD28 molecules along the distance from the center at 600 s. Error bars represent SD. Other parameters are as shown in Table 1. Cell Reports 2018 24, 1151-1162DOI: (10.1016/j.celrep.2018.06.114) Copyright © 2018 The Author(s) Terms and Conditions