Direct Feedback Analysis for RF Cavity System Shaoheng Wang 6/18/2015

Slides:



Advertisements
Similar presentations
Stephen Molloy RF Group ESS Accelerator Division
Advertisements

Power Requirements for High beta Elliptical Cavities Rihua Zeng Accelerator Division Lunds Kommun, Lund
Alternating Current Circuits
Longitudinal instabilities: Single bunch longitudinal instabilities Multi bunch longitudinal instabilities Different modes Bunch lengthening Rende Steerenberg.
Single Phase System.
Frequency Characteristics of AC Circuits
EE136 STABILITY AND CONTROL LOOP COMPENSATION IN SWITCH MODE POWER SUPPLY Present By Huyen Tran.
Alternating-Current Circuits Chapter 22. Section 22.2 AC Circuit Notation.
1 1 1 Audio-susceptibility Analysis
1 Power Electronics by Dr. Carsten Nesgaard Small-signal converter modeling and frequency dependant behavior in controller synthesis.
Static Beam Loading: – Lumped model for the generator-cavity-beam system; –Optimal cavity tuning and coupling factor; – Tuning Loop Cavity and Beam response.
Fundamentals of PWM Dc-to-Dc Power Conversion Dynamic Performance of PWM Dc-to-Dc Converters.
RF system issues due to pulsed beam in ILC DR October 20, Belomestnykh, RF for pulsed beam ILC DR, IWLC2010 S. Belomestnykh Cornell University.
RF Cavity Simulation for SPL
Shuichi Noguch, KEK6-th ILC School, November, RF Basics; Contents  Maxwell’s Equation  Plane Wave  Boundary Condition  Cavity & RF Parameters.
ECE 662 – Microwave Electronics
Double RF system at IUCF Shaoheng Wang 06/15/04. Contents 1.Introduction of Double RF System 2.Phase modulation  Single cavity case  Double cavity case.
Lecture 25 - E. Wilson - 12/15/ Slide 1 Lecture 6 ACCELERATOR PHYSICS HT E. J. N. Wilson
BEPCII Transverse Feedback System Yue Junhui Beam Instrumentation Group IHEP , Beijing.
Chapter 6: Frequency Domain Anaysis
LCLS II Subharmonic Beam Loading G. A. Krafft. Subharmonic Beam Loading Under condition of constant incident RF power, there is a voltage fluctuation.
R.SREEDHARAN  SOLEIL main parameters  Booster and storage ring low level RF system  New digital Booster LLRF system under development  Digital LLRF.
Managed by UT-Battelle for the Department of Energy Vector Control Algorithm for Efficient Fan-out RF Power Distribution Yoon W. Kang SNS/ORNL Fifth CW.
Operated by the Southeastern Universities Research Association for the U. S. Department of Energy Thomas Jefferson National Accelerator Facility 6 March.
BJT Circuits Chapter 5 Dr.Debashis De Associate Professor
Chapter 31 Alternating Current.
Operational amplifier
Single Phase System.
Automatic Control Theory CSE 322
Common Base and Common Collector Amplifiers
CLIC Main Linac Cavity BPM Snapshot of the work in progress
Wideband, solid-state driven RF systems for PSB and PS longitudinal damper.
EEP Lec 2 Dr. Michael Nasief.
Cavity-beam interaction and Longitudinal beam dynamics for CEPC DR&APDR 宫殿君
F.Marcellini, D.Alesini, A.Ghigo
Feedback Control Systems (FCS)
Principles & Applications
MALVINO Electronic PRINCIPLES SIXTH EDITION.
Y. Irie, KEK for the LOI collaboration
Common-Base Amplifier
Electric Circuits Fundamentals
Alternating-Current Circuits and Machines
Electromechanical Systems
Chapter 6 Feedback Circuits
Ch. 22: More on AC Circuits.
Alternating Current Circuits and Electromagnetic Waves
ELEC 202 Circuit Analysis II
Lecture 6 ACCELERATOR PHYSICS MT 2011 E. J. N. Wilson.
Thyristor Converters Chapter 6
Lecture 6 ACCELERATOR PHYSICS MT 2015 E. J. N. Wilson.
Electric Circuits Fundamentals
AC CIRCUIT ANALYSIS Introduction SEE 1003 Section 08 Nik Din Muhamad.
Chapter 8. Frequency-Domain Analysis
Electronic PRINCIPLES
Thyristor Converters Chapter 6
AC circuits – low-pass filter phasor representation
Diode rectifiers (uncontrolled rectifiers)
Lecture 6 ACCELERATOR PHYSICS HT E. J. N. Wilson
Accelerator Physics Particle Acceleration
Unit 3: Right Triangle Trigonometry
Accelerator Physics Particle Acceleration
USPAS Course on Recirculated and Energy Recovered Linear Accelerators
C H A P T E R 13 A.C. Series Circuits.
Lecture 24 ACCELERATOR PHYSICS HT E. J. N. Wilson
Lecture 24 ACCELERATOR PHYSICS HT E. J. N. Wilson
RF Parameters Calculation for JLEIC Colliders (e Ring)
Robinson Instability Criteria for MEIC e Ring
Parameters Changed in New MEIC Design
RF Parameters for New 2.2 km MEIC Design
RF Parameters for New 2.2 km MEIC Design
Presentation transcript:

Direct Feedback Analysis for RF Cavity System Shaoheng Wang 6/18/2015

Contents Robinson Instability Cavity Impedance Direct Feedback

Robinson Instability

Beam Loading and Phasor Diagram Vcavity Beam Syn. Motion - RF coupled system IG VG VB YL YS yT: Tuning angle of impedance yT < 0 for above transition tan 𝜓 𝑇 =− 𝑄 𝐿 𝜔 𝑅𝐹 2 − 𝜔 0 2 𝜔 𝑅𝐹 𝜔 0 𝑉 𝐼 = 𝑅 𝐿 1−𝑖tan 𝜓 𝑇 = 𝑅 𝐿 cos 𝜓 𝑇 𝑒 𝑖𝜓 ; yS: Synchronous phase angle see definition in earlier slice; yL: Loading angle angle between the generator current and the cavity voltage ; IB: fundamental harmonic component of beam current IB = 2 I0, where I0 is the average beam current; w0: cavity resonance frequency, 𝜔 0 = 1 𝐿𝐶 wRF: generator RF frequency, Synchronous beam revolution frequency times harmonic number YT -IB YT

Criteria for R. Instability 𝟐𝐜𝐨𝐬 𝝍 𝒔 𝒀 > sin −𝟐𝝍 >𝟎 Where, 𝑌= 𝑉 𝑏𝑟 𝑉 𝑔𝑎𝑝

Cavity Equavilent Circuit 𝑌= 𝑉 𝑏𝑟 𝑉 𝑔𝑎𝑝 = 𝐼 𝑏 ∗ 𝑅 𝑠 𝑉 𝑔𝑎𝑝

Direct Feedback and Lowered Effective Impedance

Forward Power Caculation for RF Cavity with Beam Loading In waveguide: Forware current: If Forward voltage: Vf = Z0*If Reflected current: Ir Reflected voltage: Vr = -Z0Ir At coupler: Input current: I1 = If + Ir Input voltage: V1 = Vf + Vr = Z0(If - Ir) Output current: I2 = I1/N= (If + Ir )/N Output voltage: V2 = NV1 = NZ0(If - Ir) Cavity: Cavity current: Ic = I2 - Ib = (If + Ir )/N - Ib Cavity voltage: Vc = ZIc = Z((If + Ir )/N - Ib) Since V2 = Vc, ie, NZ0(If - Ir) = Z((If + Ir )/N - Ib)  𝑰 𝒓 = 𝑁 2 𝑍 0 −𝒁 𝑰 𝒇 +𝒁𝑁 𝑰 𝒃 𝑁 2 𝑍 0 +𝒁 𝑽 𝒄 = 𝑁 2 𝑍 0 𝒁 2 𝑁 𝑰 𝒇 − 𝑰 𝒃 𝑁 2 𝑍 0 +𝒁 Use RL = (N2Z0)||R, 1 𝑍 𝐿 = 1 𝑅 𝐿 +𝑠𝐶+ 1 𝑠𝐿  𝑽 𝒄 = 𝒁 𝑳 2 𝑰 𝒈 − 𝑰 𝒃 𝐼 𝑔 = 𝐼 𝑓 𝑁 𝑃 𝑓 = 1 2 𝑅𝑒 𝑽 𝒇 ∙ 𝑰 𝒇 ∗ = 1 2 𝑰 𝒇 2 𝑍 0 = 1 2 𝑰 𝒈 2 𝑅 𝐿 1+𝛽 𝛽 𝑃 𝑓 = 1+𝛽 8 𝑅 𝐿 𝛽 𝑉 𝑐 2 1+ 𝑅 𝐿 𝐼 𝑏 𝑉 𝑐 sin 𝜙 𝑠 2 + tan 𝜓 + 𝑅 𝐿 𝐼 𝑏 𝑉 𝑐 cos 𝜙 𝑠 2

With Feedback and Coupler Cavity K a circulator Damper If Ir Iin IFB -Ib 1:N Coupler 1 2 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒇 = 𝐾𝑰 𝑭𝑩 𝑰 𝒇 =− 𝑰 𝒓 𝐴=𝛼𝐾/𝑁 Due to the loop: 𝑰 𝒇 = 𝐾𝑰 𝑭𝑩 = 𝐾 𝑰 𝒊𝒏 +𝐴𝑁 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 −𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒓 1+𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝑭𝑩 = 𝑰 𝒊𝒏 −𝛼 𝐾 𝑰 𝑭𝑩 + 𝑰 𝒓 𝑁 − 𝑰 𝒃 𝒆 −𝒊∆𝝎𝜹 Compare with no feedback loop case: 𝑰 𝒇 = 𝐾𝑰 𝒊𝒏 𝑰 𝟏 = 𝑰 𝒇 + 𝑰 𝒓 = 𝐾 𝑰 𝒊𝒏 +𝐴𝑁 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 + 𝑰 𝒓 1+𝐴 𝒆 −𝒊∆𝝎𝜹 On waveguide side of the coupler: 𝑽 𝟏 = 𝑍 0 𝑰 𝒇 − 𝑰 𝒓 = 𝑍 0 𝐾 𝑰 𝒊𝒏 +𝐴𝑁 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 − 1+2𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒓 1+𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝟐 = 𝑰 𝟏 𝑁 = 𝑰 𝒇 + 𝑰 𝒓 𝑁 = 𝐾 𝑰 𝒊𝒏 +𝐴 𝑁𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 + 𝑰 𝒓 𝑁 1+𝐴 𝒆 −𝒊∆𝝎𝜹 On cavity side of the coupler: 𝑽 𝟐 =𝑁 𝑽 𝟏 =𝑁 𝑍 0 𝑰 𝒇 − 𝑰 𝒓 = 𝑁𝑍 0 𝐾 𝑰 𝒊𝒏 +𝐴𝑁 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 − 1+2𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒓 1+𝐴 𝒆 −𝒊∆𝝎𝜹

With Feedback, use Vc and Ib as Variables 𝑰 𝒄 = 𝑰 𝟐 − 𝑰 𝒃 = 𝐾 𝑰 𝒊𝒏 −𝑁 𝑰 𝒃 + 𝑰 𝒓 𝑁+𝐴𝑁 𝒆 −𝒊∆𝝎𝜹 When a is small, probe current is ignored In cavity: 𝑽 𝒄 = 𝒁𝑰 𝒄 =𝒁 𝐾 𝑰 𝒊𝒏 −𝑁 𝑰 𝒃 + 𝑰 𝒓 𝑁+𝐴 𝑁𝒆 −𝒊∆𝝎𝜹 When Ir is zero and N=1, impedance seen by beam is droped by (1+A) 𝑽 𝟐 = 𝑽 𝒄 𝑁 2 𝑍 0 𝐾 𝑰 𝒊𝒏 +𝑁𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 − 1+2𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒓 =𝒁 𝐾 𝑰 𝒊𝒏 −𝑁 𝑰 𝒃 + 𝑰 𝒓 𝑰 𝒓 = 𝑁 2 𝑍 0 −𝒁 𝐾 𝑰 𝒊𝒏 + 𝑁 3 𝑍 0 𝐴 𝒆 −𝒊∆𝝎𝜹 +𝑁𝒁 𝑰 𝒃 𝒁+ 𝑁 2 𝑍 0 +2𝐴 𝑁 2 𝑍 0 𝒆 −𝒊∆𝝎𝜹 𝑽 𝒄 = 2𝑁 𝑍 0 𝒁𝐾 𝒁+ 𝑁 2 𝑍 0 +2𝐴 𝑁 2 𝑍 0 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒊𝒏 − 𝑁 2 𝑍 0 𝒁 𝒁+ 𝑁 2 𝑍 0 +2𝐴 𝑁 2 𝑍 0 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 𝑰 𝒊𝒏 = 𝒁+ 𝑁 2 𝑍 0 +2𝐴 𝑁 2 𝑍 0 𝒆 −𝒊∆𝝎𝜹 2𝑁 𝑍 0 𝒁𝐾 𝑽 𝒄 + 𝑁 2𝐾 𝑰 𝒃 𝐄𝐱𝐩𝐫𝐞𝐬𝐬𝐞𝐝 𝐚𝐬 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝑽𝒄 ,𝑰𝒃 𝑰 𝒓 = 𝑁 2 𝑍 0 −𝒁 2𝑁 𝑍 0 𝒁 𝑽 𝒄 + 𝑁 𝟐 𝑰 𝒃 𝑰 𝒇 = 𝐾 𝑰 𝒊𝒏 +𝑁𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 −𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒓 1+𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒇 = 𝑁 2 𝑍 0 +𝒁 2𝑁 𝑍 0 𝒁 𝑽 𝒄 + 𝑁 2 𝑰 𝒃

With Feedback, Forward Power Calculation 𝑰 𝒇 = 𝑁 2 𝑍 0 +𝒁 2𝑁 𝑍 0 𝒁 𝑽 𝒄 + 𝑁 2 𝑰 𝒃 𝑰 𝒇 = 𝐾 𝑰 𝒊𝒏 +𝑁𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 −𝐴 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒓 1+𝐴 𝒆 −𝒊∆𝝎𝜹 𝐼 𝑔 = 𝐼 𝑓 𝑁 𝑰 𝒈 = 1 2 𝒁 𝑳 𝑽 𝒄 + 1 2 𝑰 𝒃 𝒁 𝑳 = 𝑁 2 𝑍 0 𝒁 𝑁 2 𝑍 0 +𝒁 𝑰 𝒈 = 𝑉 𝑐 2 𝒁 𝑳 + 𝐼 𝑏 𝑒 𝑖 𝜙 𝑠 − 𝜋 2 2 𝑃 𝑓 = 1 2 𝑅𝑒 𝑉 𝑓 ∙ 𝐼 𝑓 ∗ = 1 2 𝐼 𝑓 2 𝑍 0 = 1 2 𝐼 𝑔 2 𝑅 𝐿 1+𝛽 𝛽 𝑃 𝑓 = 1+𝛽 8 𝑅 𝐿 𝛽 𝑉 𝑐 2 1+ 𝑅 𝐿 𝐼 𝑏 𝑉 𝑐 sin 𝜙 𝑠 2 + tan 𝜓 + 𝑅 𝐿 𝐼 𝑏 𝑉 𝑐 cos 𝜙 𝑠 2 𝑍 𝐿 = 𝑅 𝐿 1−𝑖 𝑄 𝐿 𝜔 0 𝜔 − 𝜔 𝜔 0 = 𝑅 𝐿 1−𝑖 tan 𝜓

Impedance Open loop Closed loop 𝑽 𝒄 = 𝑁 2 𝑍 0 𝒁 2 𝑰 𝒈 − 𝑰 𝒃 𝑁 2 𝑍 0 +𝒁 𝑽 𝒄 = 𝑁 2 𝑍 0 𝒁 2 𝑰 𝒈 − 𝑰 𝒃 𝑁 2 𝑍 0 +𝒁 𝑽 𝒄 = 2𝑁 𝑍 0 𝒁𝐾 𝒁+ 𝑁 2 𝑍 0 +2𝐴 𝑁 2 𝑍 0 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒊𝒏 − 𝑁 2 𝑍 0 𝒁 𝒁+ 𝑁 2 𝑍 0 +2𝐴 𝑁 2 𝑍 0 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 𝑽 𝒄,𝒃 = − 𝑁 2 𝑍 0 𝒁 𝒁+ 𝑁 2 𝑍 0 +2𝐴 𝑁 2 𝑍 0 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 = − 𝒁 𝑳 𝒁 𝒁+2𝐴 𝒁 𝑳 𝒆 −𝒊∆𝝎𝜹 𝑰 𝒃 𝑽 𝒄, 𝒃 = − 𝒁 𝑳 𝑰 𝒃 𝑽 𝒄,𝒃 = −1 1 𝑅 𝐿 + 2𝐴 𝑅 𝑰 𝒃 =− 𝑅 𝐿 ∥ 𝑅 2𝐴 𝑰 𝒃 =− 𝑅 1+𝛽+2𝐴 𝑰 𝒃 𝑽 𝒄, 𝒃 = −𝑅 𝐿 𝑰 𝒃 When on resonance 𝑽 𝒄,𝒃 = − 𝑅 𝐿 1+𝐴 𝑰 𝒃 RL = R/2 when matched 𝒁 𝑳 = 𝑁 2 𝑍 0 𝒁 𝑁 2 𝑍 0 +𝒁 𝑅 𝐿 = 𝑁 2 𝑍 0 𝑅 𝑁 2 𝑍 0 +𝑅

Robinson Instability Alleviated with Direct Feedback Energy = 5 GeV, Current = 3 A, Cavity Number = 10 A = 0, R. Instability Condition = 0.0 A = 8.5, R. Instability Condition = 0.09 Impedance Phase Angle Real Impedance A = 0 A = 8.5 A = 0 A = 8.5

Direct Feedback Loop Stability Loop transfer function Nyquist Plot 45o phase margin 𝑨 𝒎𝒂𝒙 = 𝑸 𝑳 𝟒𝒇𝜹 −𝟏 Group delay of PEP II cavity is 350 nSec  Amax = 8.78

Conclusion We need direct feedback to lower the cavity impedance seen by the beam No extra power is needed for the loop There is limitation for the direct feedback, comb filter feedback is needed for further multi-bunhch instability studies.