Ab initio calculation of magnetic exchange parameters

Slides:



Advertisements
Similar presentations
Spin order in correlated electron systems
Advertisements

THE ISING PHASE IN THE J1-J2 MODEL Valeria Lante and Alberto Parola.
Anisotropy and Dzyaloshinsky- Moriya Interaction in V15 Manabu Machida, Seiji Miyashita, and Toshiaki Iitaka IIS, U. Tokyo Dept. of Physics, U. Tokyo RIKEN.
Modelling of Defects DFT and complementary methods
Research Projects Dr Martin Paul Vaughan available from available from
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Physics “Advanced Electronic Structure” Lecture 7.2. Calculations of Magnetic Interactions Contents: 1.Non-collinear SDFT. 2.Applications to Magnetic.
CHE Inorganic, Physical & Solid State Chemistry Advanced Quantum Chemistry: lecture 4 Rob Jackson LJ1.16,
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
January 23, 2001Physics 8411 Elastic Scattering of Electrons by Nuclei We want to consider the elastic scattering of electrons by nuclei to see (i) how.
Electronic structure of La2-xSrxCuO4 calculated by the
Quantum Mechanics Discussion. Quantum Mechanics: The Schrödinger Equation (time independent)! Hψ = Eψ A differential (operator) eigenvalue equation H.
IRIDATES Bill Flaherty Materials 286K, UCSB Dec. 8 th, 2014.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Temperature Simulations of Magnetism in Iron R.E. Cohen and S. Pella Carnegie Institution of Washington Methods LAPW:  Spin polarized DFT (collinear)
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective:Points for Discussion G. Kotliar Physics Department and Center for Materials Theory.
Computational Physics Quantum Monte Carlo methods Dr. Guy Tel-Zur.
Topics in Magnetism II. Models of Ferromagnetism Anne Reilly Department of Physics College of William and Mary.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Magnetism III: Magnetic Ordering
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
Classical and Quantum Monte Carlo Methods Or: Why we know as little as we do about interacting fermions Erez Berg Student/Postdoc Journal Club, Oct
Lectures Introduction to computational modelling and statistics1 Potential models2 Density Functional.
Monte Carlo study of small deposited clusters from first principles L. Balogh, L. Udvardi, L. Szunyogh Department of Theoretical Physics, Budapest University.
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Atomic-scale Engeered Spins at a Surface
Single-ion and exchange anisotropy effects in small single-molecule magnets* Richard A. Klemm University of Central Florida, Orlando, FL USA and Dmitri.
Models of Ferromagnetism Ion Ivan. Contents: 1.Models of ferromagnetism: Weiss and Heisenberg 2.Magnetic domains.
Advanced methods of molecular dynamics 1.Monte Carlo methods 2.Free energy calculations 3.Ab initio molecular dynamics 4.Quantum molecular dynamics 5.Trajectory.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
ELECTRONIC STRUCTURE OF MATERIALS From reality to simulation and back A roundtrip ticket.
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Quantum Mechanics/ Molecular Mechanics (QM/MM) Todd J. Martinez.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki.
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
SPIN EXCITATIONS IN La 2 CuO 4 : CONSISTENT DESCRIPTION BY INCLUSION OF RING EXCHANGE A.A.Katanin a,b and A.P.Kampf a a Institut für Physik, Universität.
Advanced methods of molecular dynamics 1.Monte Carlo methods 2.Free energy calculations 3.Ab initio molecular dynamics 4.Quantum molecular dynamics 5.Trajectory.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
The Quantum Theory of Magnetism Carlo Maria Canali Linnaeus University 7 December 2011 – Lecture 21.
Computational Physics (Lecture 22) PHY4061. In 1965, Mermin extended the Hohenberg-Kohn arguments to finite temperature canonical and grand canonical.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Comp. Mat. Science School Electrons in Materials Density Functional Theory Richard M. Martin Electron density in La 2 CuO 4 - difference from sum.
1 B3-B1 phase transition in GaAs: A Quantum Monte Carlo Study C N M Ouma 1, 2, M Z Mapelu 1, G. O. Amolo 1, N W Makau 1, and R Maezono 3, 1 Computational.
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
Kondo Effect Ljubljana, Author: Lara Ulčakar
Dec , 2005 The Chinese University of Hong Kong
Structure of Presentation
Department of Electronics
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Study of a cobalt nanocontact
Introduction to Tight-Binding
Production of an S(α,β) Covariance Matrix with a Monte Carlo-Generated
Ferromagnetism and antiferromagnetism ferromagnetism (FM)
Local Density Functional Theory for Superfluid Fermionic Systems
Magnetism and Magnetic Materials
Density Functional Theory (introduced for many-electron systems)
Phase structure of graphene from Hybrid Monte-Carlo simulations
Electronic Structure and First Principles Theory
Zhejiang Normal University
Exchange bias and magnetocaloric effect in LaCr0. 9Ru0
Time-Dependent Density Functional Theory (TDDFT)
Chiral Spin States in the Pyrochlore Heisenberg Magnet
Density Functional Resonance Theory of Metastable Negative Ions
Wiess field model of Paramagnetism. Wiess field model of paramagnetism In the ferromagnetic materials the magnetic moments (spins) are magnetized spontaneously.
Exotic magnetic states in two-dimensional organic superconductors
Multi-Electronic Atoms
Neutron studies of iron-based superconductors
Presentation transcript:

Ab initio calculation of magnetic exchange parameters Mojtaba Alaei Physics Department, Isfahan University of Technology Quantum Simulation materials https://qsm.iut.ac.ir/ TCCW 2019 27-28 Feb 2019  Chemistry Department, Isfahan University of Technology

Bird’s-eye view ab initio Spin polarized DFT Non-collinear DFT DFT+U Experiment Spin model Hamiltonian Elastic neutron scattering , Inelastic neutron scattering, Magnetic susceptibility, Neel temperature, Curie-weiss temperature, ... Heisenberg term, Bi-quadratic term, Single-ion term, ... Monte Carlo Simulation, Spin-wave theory, ….

Model Hamiltonian and ab initio methods Physics of a system There are two strategies to get physics from Quantum mechanic of many electron systems: One is to simplify H .i.e. to get rid non-relevant freedom to specific problem: for example Ising model: One is to take account all freedom and use the complete Hamiltonian. These methods are called ab initio:

ab initio Spin polarized DFT Non-collinear DFT DFT+U Experiment Spin model Hamiltonian Elastic neutron scattering , Inelastic neutron scattering, Magnetic susceptibility, Neel temperature, Curie-weiss temperature, ... Heisenberg term, Bi-quadratic term, Single-ion term, ... Monte Carlo Simulation, Spin-wave theory, ….

Mapping ab initio Hamiltonian to model Hamiltonian The simple idea: Using different electronic configurations to build model Hamiltonian Pauli’s Principle: An effective model Hamiltonian:

Heisenberg model J1 J2 J3

Extensions of Heisenberg Model Biquadratic interaction: 4-spin exchange interaction: Dzyaloshinsky-Moriya (DM) interaction: Single-ion anisotropy: …

Mapping DFT total energy to Heisenberg model An example: Sr2NiWO6

Mapping DFT total energy to Heisenberg model Different magnetic configurations:

Mapping DFT total energy to Heisenberg model DFT energy exchange parameters -0.16 -0.12 -3.06 -3.45 Least square method (meV) (meV) (meV) (meV)

ab initio Spin polarized DFT Non-collinear DFT DFT+U Experiment Spin model Hamiltonian Elastic neutron scattering , Inelastic neutron scattering, Magnetic susceptibility, Neel temperature, Curie-weiss temperature, ... Heisenberg term, Bi-quadratic term, Single-ion term, ... Monte Carlo Simulation, Spin-wave theory, ….

How to evaluate microscopic exchange parameters? 1-Transition Temperature TN=54 K C. G. F. Blum et al., Journal of Crystal Growth 421, 39 (2015)

How to evaluate microscopic exchange parameters? 2-Curie-Weiss temperature Curie-Weiss law -150 -100 -50 C. G. F. Blum et al., Journal of Crystal Growth 421, 39 (2015)

How to evaluate microscopic exchange parameters? 3-Inelastic neutron scattering Y. Todate, Journal of Physics and Chemistry of Solids 60, 1173(1999).

How to calculate TN, ѲCW...from exchange parameters? Using (Classical) Spin Monte Carlo (MC) Simulation An illustration of MC simulation (T < TN) for J1 > 0: N MC steps MC step

ab initio Spin polarized DFT Non-collinear DFT DFT+U Experiment Spin model Hamiltonian Elastic neutron scattering , Inelastic neutron scattering, Magnetic susceptibility, Neel temperature, Curie-weiss temperature, ... Heisenberg term, Bi-quadratic term, Single-ion term, ... Monte Carlo Simulation, Spin-wave theory, ….

DFT+U Local Density Approximation; LDA

DFT+U Achievements of LDA: Homogeneous Systems Phys. Rev. Lett. 45, 1004, 1980

DFT+U Failures of LDA: Nonhomogeneous systems CeO2 crystal with an oxygen vacancy Int. J. Quantum Chem. 114, 14, 2014

DFT+U Integer preference; delocalization vs. localization ”In a collection of separated objects, nature prefers to locate an integer number of electrons on each object, and will do so except in the presence of unusual degeneracies between two or more integer configurations.” Advances in Quantum Chemistry, 21, 113 (1990)

DFT+U Integer preference; delocalization vs. localization Science, 321, 792 (2008)

DFT+U Mott insulator and Hubbard model

DFT+U Idea: Combination of DFT (LDA, GGA, …) with Hubbard model: Delocalization Localization Repulsive potential Attractive potential

DFT+U Delocalization (error) to localization (correction): Int. J. Quantum Chem. 114, 14, 2014

ab initio Spin polarized DFT Non-collinear DFT DFT+U Experiment Spin model Hamiltonian Elastic neutron scattering , Inelastic neutron scattering, Magnetic susceptibility, Neel temperature, Curie-weiss temperature, ... Heisenberg term, Bi-quadratic term, Single-ion term, ... Monte Carlo Simulation, Spin-wave theory, ….

Tuning the Hubbard U U(eV) J1(meV) J1c(meV) J2(meV) J2c(meV) TN(K) 0.36 0.34 8.06 9.07 139 5 0.16 0.12 3.06 3.45 52 6 0.14 0.10 2.52 2.73 43 7 0.11 0.08 2.05 2.30 35 MC simulation Exp: TN=54

ab initio Spin polarized DFT Non-collinear DFT DFT+U Experiment Spin model Hamiltonian Elastic neutron scattering , Inelastic neutron scattering, Magnetic susceptibility, Neel temperature, Curie-weiss temperature, ... Heisenberg term, Bi-quadratic term, Single-ion term, ... Monte Carlo Simulation, Spin-wave theory, ….

Still there is a magnetic entropy! Snapshot of spin configuration at T=4 K Anti-ferromagnetic

Bi-quadratic exchange interaction

Magnetic anisotropy

Spin-Spin correlation There is no correlation

AFM-II or AFM-IIb?

Spin Hamiltonian and Magnetic Ordering of the Double Perovskite SrNiWO To see more details: Spin Hamiltonian and Magnetic Ordering of the Double Perovskite SrNiWO Authors: Nafise Rezaei, Tayebehsadat Hashemifar, Mojtaba Alaei, Farhad Shahbazi, S Javad Hashemifar, Hadi Akbarzadeh arXiv:1806.09395 https://arxiv.org/abs/1806.09395

Thank for your attention