G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC)

Slides:



Advertisements
Similar presentations
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
Advertisements

Dynamic Aperture Study for the Ion Ring Lattice Options Min-Huey Wang, Yuri Nosochkov MEIC Collaboration Meeting Fall 2015 Jefferson Lab, Newport News,
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
Optimization of Field Error Tolerances for Triplet Quadrupoles of the HL-LHC Lattice V3.01 Option 4444 Yuri Nosochkov Y. Cai, M-H. Wang (SLAC) S. Fartoukh,
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
1 Task particle simulations studies: progress report M. Giovannozzi Objectives To study the field quality tolerances for new magnetic elements for.
Compensation of Detector Solenoid G.H. Wei, V.S. Morozov, Fanglei Lin JLEIC Collaboration Meeting Spring, 2016.
Field Quality Specifications for Triplet Quadrupoles of the LHC Lattice v.3.01 Option 4444 and Collimation Study Yunhai Cai Y. Jiao, Y. Nosochkov, M-H.
First evaluation of Dynamic Aperture at injection for FCC-hh
JLEIC MDI Update Michael Sullivan Apr 4, 2017.
Alignment and beam-based correction
JLEIC simulations status April 3rd, 2017
LHeC interaction region
Field quality update and recent tracking results
Optimization of Triplet Field Quality in Collision
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
Final Focus Synchrotron Radiation
Field quality to achieve the required lifetime goals (single beam)
First Look at Nonlinear Dynamics in the Electron Collider Ring
Optics Development for HE-LHC
Electron collider ring Chromaticity Compensation and dynamic aperture
Nonlinear Dynamics and Error Study of the MEIC Ion Collider Ring
Error and Multipole Sensitivity Study for the Ion Collider Ring
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Alternative design of the matching section for crab-cavity operation
Specifications for the JLEIC IR Magnets
CEPC main ring magnets’ error effect on DA and MDI issues
EIC Accelerator Collaboration Meeting
Triplet corrector layout and strength specifications
Ion Collider Ring Chromatic Compensation and Dynamic Aperture
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
RHIC Magnets for JLEIC Yuhong Zhang May 11, 2018.
Multipole Limit Survey of FFQ and Large-beta Dipole
Progress on Non-linear Beam Dynamic Study
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Update on MEIC Nonlinear Dynamics Work
IR Magnet Design and Engineering Considerations
JLEIC High-Energy Ion IR Design: Options and Performance
The MEIC electron ring as the large ion booster
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Status and plans for crab crossing studies at JLEIC
Alternative Ion Injector Design
First Look at Error Sensitivity in MEIC
Fanglei Lin, Yuri Nosochkov Vasiliy Morozov, Yuhong Zhang, Guohui Wei
Update on JLEIC Electron Ring Design
Multipole Limit Survey of FFQ and Large-beta Dipole
G. Wei, V.S. Morozov, Fanglei Lin
Compensation of Detector Solenoids
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
Multipole Limit Survey of Large-beta Dipoles
Integration of Detector Solenoid into the JLEIC ion collider ring
Basic Error & Multipole Error for MEIC Ion Ring
Discussions on DA with tune scan
G. Wei, V.S. Morozov, Fanglei Lin MEIC R&D Meeting, JLab, Oct 27, 2015
Status of IR / Nonlinear Dynamics Studies
Possibility of MEIC Arc Cell Using PEP-II Dipole
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Upgrade on Compensation of Detector Solenoid effects
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
Summary of JLEIC Electron Ring Nonlinear Dynamics Studies
Integration of Detector Solenoids
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
A TME-like Lattice for DA Studies
Error Sensitivity in MEIC
Compensation of Detector Solenoid Coherent Orbit Correction
3.2 km FODO lattice for 10 Hz operation (DMC4)
Sha Bai CEPC AP meeting Work summary Sha Bai CEPC AP meeting
Presentation transcript:

 Field Quality Requirement Study of Triplet FFQ for JLEIC ion collider ring G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC) JLEIC Meeting, JLab, March 3, 2016 F. Lin

Contents Overview at similar machines LHC RHIC Tevatron Multipole limit survey of FFQ for JLEIC ion collider ring Simulation method Multipole sensitivity and limit due to 10 σ of beam Coil Aperture and reference radius Multipole limit with FFQ aperture which physics group suggested

Multipoles of FFQ in LHC Old LHC b* = 55/55 cm HL-LHC b* = 15/15 cm bmax~ 4.5km bmax~ 21.5km

Multipoles of FFQ in LHC Old LHC b* = 55/55 cm HL-LHC b* = 15/15 cm bmax~ 4.5km bmax~ 21.5km Old LHC HL-LHC Gradient ~210 T/m ~140 T/m Aperture 70 mm 150 mm Reference 17 mm 50 mm JLEIC-FFQ upstream downstream

Multipoles of FFQ in LHC Aperture definition Inner aperture beam envelope (10 σ per beam), beam separation (10 σ), β-beating (20%), peak orbit excursion (2 mm) mechanical tolerance (1.6 mm), spurious dispersion orbit d (1 mm) Q1: 98 mm Q2-Q3-D1: 118 mm With Beam screen, Coil Aperture: 150mm Reference radius = Coil Aperture/3 = 50mm Beam halo: 12s

Multipoles of FFQ in LHC Multipoles of FFQ in Old LHC bn: normal multipole; an: skew multipole Measured@1.9K

Multipoles of FFQ in LHC Multipoles of FFQ in HL-LHC bn: normal multipole; an: skew multipole Design data & DA modified data

Multipoles of FFQ in LHC Reference DAmin=6.79s DAmin=10.69s DA with multipole data DA with modified multipole data

Multipoles of FFQ in RHIC

Multipoles of FFQ in RHIC Gradient ~48.1 T/m Aperture 130 mm Reference 40 mm

Multipoles of FFQ in LHC Aperture : Coil aperture: 130 mm; reference radius : 40 mm proton Design: 250 GeV, 20 pi mm-mrad (IBS, nor. 95%), Beta_max= 1400 Coil aperture: ~ 16 sigma; reference radius : ~ 10 sigma Experiment: 100 GeV, Dec 2011~ Jan 2012 Au 100 GeV, 40 pi mm-mrad (IBS, nor. 95%), Beta_max= 1400 Coil aperture: ~ 7 sigma; reference radius : ~ 5 sigma

Multipoles of FFQ in RHIC

Multipoles of FFQ in Tevatron Layout of Tevatron

JLEIC Ion Collider Ring Q S ALL 133 205 75 IR area 2 6 β> 200 m 21 19 8

Simulation setup & method

Simulation setup & method 1,000 turns ELEGANT Dynamic Aperture (line Mode,41 angles) 60 GeV / 100 GeV beam energy Tune = 25.22, 23.16 Normalized emittance = 0.35 mm-rad / 0.07 mm-rad σx: m σy: m

Simulation setup & method 1000 turns is selected. And ~ 0.5 sigma of DA result compared with DA result by 10000 turns Time needed 1k turns: 10 days 5k turns: 50 days 10k turns: 100 days 10 turns 100 turns 1000 turns 5000 turns 10000 turns

Simulation setup & method Multipoles Normal: Systematic + Random Skew: Systematic + Random

Simulation setup & method Single Multipole: Normal Systematic Combined result: Normal Systematic Normal + Skew Systematic Single Multipole: Skew Systematic Combined result: Skew Systematic

Simulation setup & method 2 3 4 ~35 σ of H & V: 3.5*(2.32, 0.46) e-4 @ 60 GeV 5 6 7

Simulation setup & method 8 9 10 ~35 σ of H & V: 3.5*(2.32, 0.46) e-4 @ 60 GeV 11 12 13

Simulation setup & method ++++++++ -------- 20 σ of H & V: 2*(2.32, 0.46) e-4 @ 60 GeV -+-+-+-+ +-+-+-+-

Multipole limit survey of FFQ Single Multipole: 20 σ of H & V Normal Systematic Combined result: 12 σ of H & V Normal Systematic 10 σ of H & V Normal + Skew Systematic Single Multipole: 20 σ of H & V Skew Systematic Combined result: 12 σ of H & V Skew Systematic

Survey of FFQ normal systematic multipole Multipole of FFQ at radius 43.41 mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R -5.14 E-02 -1.51 E-01 3.44 -2.72 -1.96 1.31 -1.24 6.79 -1.26 LHC (@17 mm) 0.75 0.64 0.09 -0.37 -0.02 0.02 0.04 -0.01 JLEIC-plus 11 2.46 6.92 8.55 1.45 3.08 3.83 1.125E-01 1.14 JLEIC-minus -10.4 -2.8 -6.35 -1.09 -1.34 -2.28 -3.6 -6.93 Multipole of FFQ at radius 43.41 mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -4.69 E-03 -1.22 E-02 -1.42 JLEIC-plus 3.67 3.63 1.06 JLEIC-minus -2.08 -3.43 -6.42

Survey of FFQ skew systematic multipole Multipole of FFQ at radius 43.41 mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R 5.28 E-01 4.02 E-02 6.21 4.32 2.53 -2.59 4.60 -1.87 4.84 E-03 LHC (@17 mm) -0.82 -0.06 -0.47 -0.02 0.02 -0.03 -0.04 JLEIC-plus 14.8 2.4 5.5 5.67 5.59 1.5 1.3 5.09 4.03 JLEIC-minus -14.8 -2.4 -5.5 -5.6 -5.59 -1.5 -1.29 -5.05 -3.76 Multipole of FFQ at radius 43.41 mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -8.99 E-03 -8.22 -1.01 E-02 JLEIC-plus 1.61 1.21 4.3 JLEIC-minus -1.51 -1.21 -4.3

Multipole limit survey of FFQ Single Multipole: 16 σ of H & V Normal Systematic 10 σ of H & V Normal + Skew Systematic Single Multipole: 17 σ of H & V Skew Systematic

Survey of FFQ normal systematic multipole Multipole of FFQ at radius 43.41 mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R -5.14 E-02 -1.51 E-01 3.44 -2.72 -1.96 1.31 -1.24 6.79 -1.26 LHC (@17 mm) 0.75 0.64 0.09 -0.37 -0.02 0.02 0.04 -0.01 JLEIC-plus 1 3.92 1.63 7.51 7.4 JLEIC-minus -1 -3.92 -1.63 -7.51 -7.4 Multipole of FFQ at radius 43.41 mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -4.69 E-03 -1.22 E-02 -1.42 JLEIC-plus 3.83 E-01 3.87 1.77 JLEIC-minus -3.83 -3.87 -1.77

Survey of FFQ skew systematic multipole Multipole of FFQ at radius 43.41 mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R 5.28 E-01 4.02 E-02 6.21 4.32 2.53 -2.59 4.60 -1.87 4.84 E-03 LHC (@17 mm) -0.82 -0.06 -0.47 -0.02 0.02 -0.03 -0.04 JLEIC-plus 1 1.98 5 6.67 2.22 2.69 JLEIC-minus -1 -1.98 -5 -6.67 -2.22 -2.69 Multipole of FFQ at radius 43.41 mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -8.99 E-03 -8.22 -1.01 E-02 JLEIC-plus 1. E-01 1.2 3.44 JLEIC-minus -1. -1.2 -3.44

Scaling method to make comparison Scaling with reference radius r0 and coil diameter dc coil diameter inner diameter ? Scaling with peak IT beta function bmax to keep contribution of the IT field non-linear resonance driving terms constant. where n=2 is for a quadrupole, etc. BQ is the main quadrupole field at r0

Different aperture of FFQ According to different aperture in these 6 FFQ, different reference radius is setup in the simulation due to 15 sigma

Multipole limit survey of FFQ Single Multipole: 18 σ of H & V Normal Systematic Combined result: 12 σ of H & V Normal Systematic 10 σ of H & V Normal + Skew Systematic Single Multipole: 18 σ of H & V Skew Systematic Combined result: 11 σ of H & V Skew Systematic

Survey of FFQ normal systematic multipole Multipole of FFQ (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R -5.14 E-02 -1.51 E-01 3.44 -2.72 -1.96 1.31 -1.24 6.79 -1.26 LHC (@17 mm) 0.75 0.64 0.09 -0.37 -0.02 0.02 0.04 -0.01 JLEIC-plus 1 0.91 0.56 JLEIC-minus -1 -0.91 -0.56 Multipole of FFQ (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -4.69 E-03 -1.22 E-02 -1.42 JLEIC-plus 0.55 0.36 0.43 JLEIC-minus -0.55 -0.36 -0.43

Survey of FFQ skew systematic multipole Multipole of FFQ (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R 5.28 E-01 4.02 E-02 6.21 4.32 2.53 -2.59 4.60 -1.87 4.84 E-03 LHC (@17 mm) -0.82 -0.06 -0.47 -0.02 0.02 -0.03 -0.04 JLEIC-plus 1 9.33 6.68 6.55 JLEIC-minus -1 -9.33 -6.68 -6.55 Multipole of FFQ (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -8.99 E-03 -8.22 -1.01 E-02 JLEIC-plus 3.57 E-01 3.35 1.59 JLEIC-minus -3.57 -3.35 -1.59

Summary Multipole Limit Survey is preliminarily studied for FFQ of JLEIC ion ring. Considering LHC and RHIC case, Multipole limit looks in range of current technology level of superconduct magnets, except one thing which is the large aperture of last two downstream FFQ. Last two FFQ have inner aperture of 157 mm and 170 mm. It is a good thing for low multipole, but looks too large considering superconduct magnet in LHC and RHIC?

Summary Deep study should be done considering: Make sure of emittance after cooling Make sure of physical aperture with physics group Multipole limit study for heavy ion Supercomputer is needed to get accurate result with 100,000 turns (1000 turns now) 200 GeV of JLEIC ion ring ?

Thank you F. Lin

Multipole limit survey of FFQ ++++++++ -------- Single Multipole: 20 σ of H & V Combined result: 12 σ of H & V 12 σ of H & V: 1.2*(2.32, 0.46) e-4 @ 60 GeV -+-+-+-+ +-+-+-+-

LHC FFQ measured multipoles

Multipoles of FFQ & large-beta dipole in LHC

Multipoles of FFQ & large-beta dipole in LHC

Multipoles of FFQ & large-beta dipole in LHC

Discussion: a standard of FFQ multipoles

Multipoles of FFQ in LHC : Gaussian distributed random variables cut at 1.5 sigma. Same for all magnets of a given class, but changes from seed to seed variables cut at 3 sigma. Changes also from magnet to magnet G. Sabbi, E. Todesco, “Requirements for Nb3Sn Inner Triplet and Comparison With Present State of the Art”, HILUMILHC-MIL-MS-33, 2012. WEPEA048, IPAC2013

Multipoles of FFQ in LHC (Yuri) Magnets field quality specifications, Nosochkov, Yuri (SLAC) et al, 28 Nov. 2014

Multipoles of FFQ in LHC

Multipoles of FFQ in LHC

Scaling method to make comparison Scaling with reference radius r0 and coil diameter dc