Introduction to Econometrics, 5th edition

Slides:



Advertisements
Similar presentations
EC220 - Introduction to econometrics (chapter 13)
Advertisements

1 THE DISTURBANCE TERM IN LOGARITHMIC MODELS Thus far, nothing has been said about the disturbance term in nonlinear regression models.
1 XX X1X1 XX X Random variable X with unknown population mean  X function of X probability density Sample of n observations X 1, X 2,..., X n : potential.
1 The graphical approach appears to have served the time series analysts satisfactorily, but on the whole econometricians prefer more formal methods and.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: tests of nonstationarity: introduction Original citation: Dougherty,
Augmented Dickey-Fuller Test Equation Dependent Variable: D(LGDPI) Method: Least Squares Sample (adjusted): Included observations: 44 after adjustments.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: tests of nonstationarity: example and further complications Original.
============================================================ Dependent Variable: LGHOUS Method: Least Squares Sample: Included observations:
1 THE NORMAL DISTRIBUTION In the analysis so far, we have discussed the mean and the variance of a distribution of a random variable, but we have not said.
1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you.
Random effects estimation RANDOM EFFECTS REGRESSIONS When the observed variables of interest are constant for each individual, a fixed effects regression.
1 The graphical approach appears to have served the time series analysts satisfactorily, but on the whole econometricians prefer more formal methods and.
MEASUREMENT ERROR 1 In this sequence we will investigate the consequences of measurement errors in the variables in a regression model. To keep the analysis.
1 ASSUMPTIONS FOR MODEL C: REGRESSIONS WITH TIME SERIES DATA Assumptions C.1, C.3, C.4, C.5, and C.8, and the consequences of their violations are the.
Stationary process NONSTATIONARY PROCESSES 1 In the last sequence, the process shown at the top was shown to be stationary. The expected value and variance.
00  sd  0 –sd  0 –1.96sd  0 +sd 2.5% CONFIDENCE INTERVALS probability density function of X null hypothesis H 0 :  =  0 In the sequence.
EXPECTED VALUE OF A RANDOM VARIABLE 1 The expected value of a random variable, also known as its population mean, is the weighted average of its possible.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
TESTING A HYPOTHESIS RELATING TO THE POPULATION MEAN 1 This sequence describes the testing of a hypothesis at the 5% and 1% significance levels. It also.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: continuous random variables Original citation: Dougherty, C. (2012)
1 A MONTE CARLO EXPERIMENT In the previous slideshow, we saw that the error term is responsible for the variations of b 2 around its fixed component 
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
DERIVING LINEAR REGRESSION COEFFICIENTS
EC220 - Introduction to econometrics (chapter 12)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
1 In a second variation, we shall consider the model shown above. x is the rate of growth of productivity, assumed to be exogenous. w is now hypothesized.
EC220 - Introduction to econometrics (review chapter)
1 UNBIASEDNESS AND EFFICIENCY Much of the analysis in this course will be concerned with three properties of estimators: unbiasedness, efficiency, and.
FIXED EFFECTS REGRESSIONS: WITHIN-GROUPS METHOD The two main approaches to the fitting of models using panel data are known, for reasons that will be explained.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
THE DUMMY VARIABLE TRAP 1 Suppose that you have a regression model with Y depending on a set of ordinary variables X 2,..., X k and a qualitative variable.
1 CONTINUOUS RANDOM VARIABLES A discrete random variable is one that can take only a finite set of values. The sum of the numbers when two dice are thrown.
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
1 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Methodologically, in developing a regression specification.
CONSEQUENCES OF AUTOCORRELATION
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
CONFLICTS BETWEEN UNBIASEDNESS AND MINIMUM VARIANCE
1 t TEST OF A HYPOTHESIS RELATING TO A POPULATION MEAN The diagram summarizes the procedure for performing a 5% significance test on the slope coefficient.
MULTIPLE RESTRICTIONS AND ZERO RESTRICTIONS
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
TYPE II ERROR AND THE POWER OF A TEST A Type I error occurs when the null hypothesis is rejected when it is in fact true. A Type II error occurs when the.
A.1The model is linear in parameters and correctly specified. PROPERTIES OF THE MULTIPLE REGRESSION COEFFICIENTS 1 Moving from the simple to the multiple.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
AUTOCORRELATION 1 Assumption C.5 states that the values of the disturbance term in the observations in the sample are generated independently of each other.
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
1 ASYMPTOTIC PROPERTIES OF ESTIMATORS: THE USE OF SIMULATION In practice we deal with finite samples, not infinite ones. So why should we be interested.
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
4 In our case, the starting point should be the model with all the lagged variables. DYNAMIC MODEL SPECIFICATION General model with lagged variables Static.
HETEROSCEDASTICITY 1 This sequence relates to Assumption A.4 of the regression model assumptions and introduces the topic of heteroscedasticity. This relates.
1 HETEROSCEDASTICITY: WEIGHTED AND LOGARITHMIC REGRESSIONS This sequence presents two methods for dealing with the problem of heteroscedasticity. We will.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
TESTING FOR NONSTATIONARITY 1 This sequence will describe two methods for detecting nonstationarity, a graphical method involving correlograms and a more.
TESTING FOR NONSTATIONARITY 1 This sequence will describe two methods for detecting nonstationarity, a graphical method involving correlograms and a more.
1 We will illustrate the heteroscedasticity theory with a Monte Carlo simulation. HETEROSCEDASTICITY: MONTE CARLO ILLUSTRATION 1 standard deviation of.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
FOOTNOTE: THE COCHRANE–ORCUTT ITERATIVE PROCESS 1 We saw in the previous sequence that AR(1) autocorrelation could be eliminated by a simple manipulation.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

Introduction to Econometrics, 5th edition Type author name/s here Dougherty Introduction to Econometrics, 5th edition Chapter heading Chapter 13: Introduction to Nonstationary Time Series © Christopher Dougherty, 2016. All rights reserved.

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process Section 11.7 outlines the time series analysis approach to representing a time series as a univariate ARMA(p, q) process, such as that shown above, for appropriate choice of p and q. 6

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process Much earlier than conventional econometricians, time series analysts recognized the importance of nonstationarity and the need for eliminating it by differencing. 6

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process With the need-for-differencing aspect in mind, the ARMA(p, q) model was generalized to the ARIMA(p, d, q) model where d is the number of times the series has to be differenced to render it stationary. 6

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process Autocorrelation function for k = 1, ... The key tool for determining d, and subsequently p and q, was the correlogram. 6

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process Autocorrelation function for k = 1, ... The autocorrelation function of a series Xt gives the theoretical correlation between the value of a series at time t and its value at time t +k, for values of k from 1 to (typically) about 20, being defined as the series shown above, for k = 1, … 6

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process Autocorrelation function for k = 1, ... Autocorrelation function of an AR(1) process For example, the autocorrelation function for an AR(1) process Xt = b2Xt–1 + et is rk = b2k, the coefficients decreasing exponentially with the lag provided that b2 < 1 and the process is stationary. 6

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY Autocorrelation function for k = 1, ... Correlogram of an AR(1) process The correlogram is the graphical representation of the autocorrelation function. The figure shows the correlogram for an AR(1) process with b2 = 0.8. 7

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY Autocorrelation function for k = 1, ... Correlogram of an AR(1) process Higher-order stationary AR(p) processes may exhibit a more complex mixture of damped sine waves and damped exponentials, but they retain the feature that the weights eventually decline to zero. 8

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process Autocorrelation function for k = 1, ... Autocorrelation function of an MA(1) process By contrast, an MA(q) process has nonzero weights for only the first q lags and zero weights thereafter. In particular, the first autocorrelation coefficient for the MA(1) process Xt = et + a2et–1 is as shown and all subsequent autocorrelation coefficients are zero. 9

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY Correlogram of a random walk (T = 200) In the case of nonstationary processes, the theoretical autocorrelation coefficients are not defined but one may be able to obtain an expression for E(rk), the expected value of the sample autocorrelation coefficients. 10

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY Correlogram of a random walk (T = 200) For long time series, these coefficients decline slowly. For example, in the case of a random walk, the correlogram for a series with 200 observations is as shown in the figure. 11

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process Time series analysts exploit this fact in a two-stage procedure for identifying the orders of a series believed to be of the ARIMA(p, d, q) type. 12

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process In the first stage, if the correlogram exhibits slowly declining coefficients, the series is differenced d times until the series exhibits a stationary pattern. Usually one differencing is sufficient, and seldom more than two. 13

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process The second stage is to inspect the correlogram of the differenced series and its partial correlogram, a related tool, to determine appropriate values for p and q. 14

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process This is not an exact science. It requires judgment, a reading of the tea-leaves, and different analysts can come up with different values. However, when that happens, alternative models are likely to imply similar forecasts, and that is what matters. 15

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process Time series analysis is a pragmatic approach to forecasting. As Box, a leading exponent, once said, “All models are wrong, but some are useful.” 16

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY ARIMA(p, q) process In any case, the complexity of the task is limited by the fact that in practice most series are adequately represented by a process with the sum of p and q no greater than 2. 17

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY Correlogram of a random walk (T = 200) There are, however, two problems with using correlograms to identify nonstationarity. One is that a correlogram similar to that for a random walk, shown in the figure, could result from a stationary AR(1) process with a high value of b2. 18

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY Correlogram of a random walk (T = 50) The other is that the coefficients of a nonstationary process may decline quite rapidly if the series is not long. This is illustrated in the figure, which shows the expected values of rk for a random walk when the series has only 50 observations. 19

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY LGDPI We will now look at an example. The figure showss the data for the logarithm of DPI for 1959–2003. 20

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY Sample correlogram of LGDPI This figure presents the sample correlogram. 21

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY Sample correlogram of LGDPI At first sight, the falling autocorrelation coefficients suggest a stationary AR(1) process with a high value of b2. 22

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY Correlogram of an AR(1) process Sample correlogram of LGDPI Although the theoretical correlogram for such a process, shown inset, looks a little different in that the coefficients decline exponentially to zero without becoming negative, a sample correlogram would have negative values similar to those in the figure. 23

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY Correlogram of a random walk (T = 50) Sample correlogram of LGDPI However, the correlogram of LGDPI is also very similar to that for the finite nonstationary process shown inset. 24

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY First difference of LGDPI This figure shows the differenced series, which appears to be stationary around a mean annual growth rate of between 2 and 3 percent. 25

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY First difference of LGDPI Possibly there might be a downward trend, and equally possibly there might be a discontinuity in the series at 1972, with a step down in the mean growth rate after the first oil shock, but these hypotheses will not be investigated here. 26

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY Sample correlogram of first difference of LGDPI This figure shows the corresponding correlogram, whose low, erratic autocorrelation coefficients provide support for the hypothesis that the differenced series is stationary. 27

Copyright Christopher Dougherty 2016. These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 13.3 of C. Dougherty, Introduction to Econometrics, fifth edition 2016, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre http://www.oxfordtextbooks.co.uk/orc/dougherty5e/. Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx or the University of London International Programmes distance learning course 20 Elements of Econometrics www.londoninternational.ac.uk/lse. 2016.05.24