Fig. 1 Lipid and nanoparticle segregation at the cholesteric liquid crystal–water interface. Lipid and nanoparticle segregation at the cholesteric liquid.

Slides:



Advertisements
Similar presentations
Fig. 4 3D reconfiguration of liquid metals for electronics.
Advertisements

Fig. 2 2D-IR spectroscopy on liquid ZnPa under dry conditions.
Fig. 3 FM MnBi2Te4 bulk. FM MnBi2Te4 bulk. Crystal structure (A) and band structure (B) of the FM bulk. (C) Zoom-in band structures along the out-of-plane.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 3 Oil, gas, and FP water variations with time.
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Map of water stress and shale plays.
Fig. 2 Self-assembly of NPs in the Ch-CNC droplets.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 1 NP-free Ch-CNC droplets.
Fig. 3 Electron PSD in various regions.
Fig. 4 Morphogenesis in the Ch-CNC host droplets and NP assemblies.
Fig. 6 Different models of assembly of Ch-CNC droplets laden with Fe3O4NPs under magnetic field. Different models of assembly of Ch-CNC droplets laden.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 2 Reference-fixing experiment, results.
Fig. 4 Latency of CsLoc during testing.
Fig. 3 Scan rate effects on the layer edge current.
Interactive morphogenesis in Ch-CNC droplets laden with magnetic NPs
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 1 Reference-fixing experiment, setup.
Fig. 1 Distribution of total and fake news shares.
Fig. 3 Photon number statistics resulting from Fock state |l, S − l〉 interference. Photon number statistics resulting from Fock state |l, S − l〉 interference.
Fig. 2 2D QWs of different propagation lengths.
Fig. 1 HDH complex. HDH complex. (A and B) Negative-stain electron micrographs of K. stuttgartiensis HDH alone in the absence and presence (300 mM) of.
Fig. 1 Structure of L10-IrMn.
Fig. 1 Schematic illustration and atomic-scale rendering of a silica AFM tip sliding up and down a single-layer graphene step edge on an atomically flat.
Fig. 6 Longevity and mechanical perturbation of a liquid membrane.
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 4 DFT ωB97x/def2-TZVPP atomic charges on the sulfur atom of substituted thioaldehyde and AIMNet prediction with a different number of iterative passes.
Fig. 3 Load dependence of friction force and corresponding COF.
Fig. 2 Light, confocal, and transmission electron micrographs of P
Fig. 3 ET dynamics on the control and treatment watersheds during the pretreatment and treatment periods. ET dynamics on the control and treatment watersheds.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 4 Evolution of fraction of sickled RBCs under hypoxia.
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 5 The different fractions of the rates of energy flow in the oscillating thermal circuit for the experiment with L = 58.5 H shown in Fig. 4A. The.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Fig. 2 NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ clean air policy. NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ.
Fig. 2 Sources of plastic waste imports into China in 2016 and cumulative plastic waste export tonnage (in million MT) in 1988–2016. Sources of plastic.
Fig. 1 Global occurrences of hydraulic fracturing–induced seismicity and potential models. Global occurrences of hydraulic fracturing–induced seismicity.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 3 Raman spectra for the composite materials of the TS.
Fig. 2 NP characterization.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 3 Directional rolling of an NP on a dsDNA fragment with flexibility gradient. Directional rolling of an NP on a dsDNA fragment with flexibility gradient.
Fig. 4 Next-generation MOF with increased productivity.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 3 Characterization of translational and rotational diffusion of platelets. Characterization of translational and rotational diffusion of platelets.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Mapping of abundance of the most dominant bacterial and archaeal phyla across France. Mapping of abundance of the most dominant bacterial and archaeal.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 4 Single-particle contact angle measurements.
Fig. 3 Supraballs and films assembled from binary 219/217nm SPs/SMPs.
Fig. 2 Supraballs and films from binary SPs.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 1 Structure and basic properties of EuTiO3 (ETO) films.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 1 Design principle and SEM characterization of super-origami DNA nanostructures with n-tuples. Design principle and SEM characterization of super-origami.
Fig. 1 Overview of amber clast with synchrotron x-ray μCT image of articulated snake skeleton (DIP-S-0907). Overview of amber clast with synchrotron x-ray.
Fig. 4 Acoustophoretic printing of food, optical, biological, and electrically conductive materials. Acoustophoretic printing of food, optical, biological,
Fig. 3 Calculated electronic structure of ZrCoBi.
Fig. 5 Schematics illustrating enhancement in April tornado activity due to SST. Schematics illustrating enhancement in April tornado activity due to SST.
Presentation transcript:

Fig. 1 Lipid and nanoparticle segregation at the cholesteric liquid crystal–water interface. Lipid and nanoparticle segregation at the cholesteric liquid crystal–water interface. (A) Cholesterics (gray) must twist along the surface to have as much homeotropic anchoring as possible from the presence of lipids in the surrounding water phase. The hydrophobic tails of the lipids prefer the liquid crystal phase, causing liquid crystal molecules to lie parallel to the tail and thus perpendicular to the interface. Twist regions with molecules tangent to the interface exclude traditional, molecular surfactants, such as lipids (red). (B) Laser scanning confocal microscopy data of lipids (TR-DLPC, red) at the cholesteric-water interface demonstrate segregation of the lipids into stripes that follow the underlying cholesteric order. As lipid concentration increases (i to iii), surface stripes become wider and more disordered (ii) until twist regions are forced away from the surface as a result of the lipids saturating the interface (iii). (C) Surfactant-decorated nanoparticles, made surface active from the electrostatic grafting of molecular surfactants to the nanoparticle surface, are also found to align with molecules perpendicular to the interface, forming patterned assemblies. (D) Projections of laser scanning confocal microscopy z stacks of nanoparticles (green) on cholesteric droplets demonstrate how nanoparticles surface modified by surfactants can follow the underlying cholesteric patterning at the cholesteric-water interface. Electrostatic surface functionalization allows flexible surface chemistry. The data show that amine-functionalized silica nanoparticles, which have positive surface charge, now become surface active after modification by negatively charged surfactant, SOS. Increasing the SOS concentration to obtain nanoparticles with sufficiently negative zeta potentials is needed for the particles to segregate into stripes (iii). Numbers on the upper right corners of micrographs are system zeta potential measurements. Scale bars, 50 μm. Lisa Tran et al. Sci Adv 2018;4:eaat8597 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).