CIRCUITS and SYSTEMS – part II

Slides:



Advertisements
Similar presentations
Lecture - 9 Second order circuits
Advertisements

Reading Assignment: Chapter 8 in Electric Circuits, 9th Ed. by Nilsson
Series RLC Network An example on how to solve for A 1 and A 2.
Let us examine this LC circuit mathematically. To do this let us examine the energy of the system. Conservation of Energy 2 nd order differential equation.
EE40 Summer 2006: Lecture 5 Instructor: Octavian Florescu 1 Announcements Lecture 3 updated on web. Slide 29 reversed dependent and independent sources.
RLC Circuits Natural Response ECE 201 Circuit Theory I.
2nd Order Circuits Lecture 16.
Lecture 151 1st Order Circuit Examples. Lecture 152 Typical Problems What is the voltage as a capacitor discharges to zero? What is the voltage as a capacitor.
Fundamentals of Electric Circuits Chapter 8
6. Circuit Analysis by Laplace
Lecture 181 Second-Order Circuits (6.3) Prof. Phillips April 7, 2003.
Series RLC Network. Objective of Lecture Derive the equations that relate the voltages across a resistor, an inductor, and a capacitor in series as: the.
Source-Free RLC Circuit
Parallel RLC Network. Objective of Lecture Derive the equations that relate the voltages across a resistor, an inductor, and a capacitor in parallel as:
RC, RLC circuit and Magnetic field RC Charge relaxation RLC Oscillation Helmholtz coils.
Chapter 8 Second-Order Circuits
Fundamentals of Electric Circuits Chapter 8
Chapter 4 Transients.
Chapter 7. First and second order transient circuits
6. RLC CIRCUITS CIRCUITS by Ulaby & Maharbiz. Overview.
Series RLC Network. Objective of Lecture Derive the equations that relate the voltages across a resistor, an inductor, and a capacitor in series as: the.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 12 First Order Transient.
Lecture 10 - Step Response of Series and Parallel RLC Circuits
EENG 2610: Circuit Analysis Class 12: First-Order Circuits
ELECTRICA L ENGINEERING Principles and Applications SECOND EDITION ALLAN R. HAMBLEY ©2002 Prentice-Hall, Inc. Chapter 4 Transients Chapter 4 Transients.
Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 9 The RLC Circuit.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 14 Second Order Transient.
Step Response Series RLC Network.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Alexander-Sadiku Fundamentals of Electric Circuits
Assist.Prof. Aysun Taşyapı ÇELEBİ Electronics and Communication Engineering University of Kocaeli.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Chapter 4 Transients. 1.Solve first-order RC or RL circuits. 2. Understand the concepts of transient response and steady-state response.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part I
SECOND ORDER CIRCUIT. Revision of 1 st order circuit Second order circuit Natural response (source-free) Forced response SECOND ORDER CIRCUIT.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Week 6 Second Order Transient Response. Topics Second Order Definition Dampening Parallel LC Forced and homogeneous solutions.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Laplace Circuit Analysis
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 13 RC/RL Circuits, Time.
1 EKT101 Electric Circuit Theory Chapter 5 First-Order and Second Circuits.
Chapter 5 Transient Analysis Tai-Cheng Lee Electrical Engineering/GIEE 1.
First Order And Second Order Response Of RL And RC Circuit
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Chapter 5 First-Order and Second Circuits 1. First-Order and Second Circuits Chapter 5 5.1Natural response of RL and RC Circuit 5.2Force response of RL.
Thursday August 2, PHYS 1444 Ian Howley PHYS 1444 Lecture #15 Thursday August 2, 2012 Ian Howley Dr. B will assign final (?) HW today(?) It is due.
Source-Free Series RLC Circuits.
Lecture - 7 First order circuits. Outline First order circuits. The Natural Response of an RL Circuit. The Natural Response of an RC Circuit. The Step.
Response of First Order RL and RC
1 ECE 3301 General Electrical Engineering Section 30 Natural Response of a Parallel RLC Circuit.
Circuits and Systems Theory
LAPLACE TRANSFORM AS AN USEFUL TOOL IN TRANSIENT STATE ANALYSIS
First Order And Second Order Response Of RL And RC Circuit
EKT101 Electric Circuit Theory
ECE 3301 General Electrical Engineering
1.4. The Source-Free Parallel RLC Circuits
Lecture 13 - Step Response of Series and Parallel RLC Circuits
Source-Free RLC Circuit
Step Response Parallel RLC Network.
2. 2 The V-I Relationship for a Resistor Let the current through the resistor be a sinusoidal given as Is also sinusoidal with amplitude amplitude.
* 07/16/96 What is Second Order?
Chapter 8 Second Order Circuits
3/16/2015 Hafiz Zaheer Hussain.
CIRCUITS and SYSTEMS – part II
C H A P T E R 5 Transient Analysis.
CIRCUITS and SYSTEMS – part I
Presentation transcript:

CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja dystrybuowana jest bezpłatnie

Lecture 11 Transient states in electrical circuits – Laplace transformation approach

Laplace representation of basic elements Resistor Inductor Capacitor Any real circuit element has its Laplace model valid in complex frequency space (s-space).

Kirchhoff’s laws for transforms Current law Voltage law These laws are formed identically as for real time currents and voltages.

Transient in the circuit using Laplace transforms Determine the initial values iL(0-) and uC(0-) 2) Determine the steady state in circuit after commutation iLu(0+) and uCu(0+) 3) Calculate the natural responses ucp and iLp of the circuit deprived of external excitations (voltage source - short circuit, current source – open circuit) 4) Final solution is the superposition of both states This is so called method of superposition of states (necessary at sinusoidal excitations).

Calculation of natural response Eliminate the external sources the RLC circuit Determine the initial conditions for natural response Form the Laplace model of the RLC circuit deprived of external sources Using Kirchhoff’s laws find the solution of this circuit in s-space (operator form) Calculate the inverse Laplace transforms (original fuctions) of the currents of inductors and voltages of capacitors.

Example Determine the transient of inductor current after commutation. Assume: R=2 , L=1H, C=1/4F, Solution: Initial conditions

Steady state after commutation

Natural response Laplace model of the circuit for natural response Initial conditions for natural response Solution as Laplace transform

Final solution Because of complex poles we apply the table of trasforms Natural response in time form Total current of the inductor

Transient state in RLC circuit at DC excitation Zero initial conditions Laplace model of the circuit

Laplace form of solution Current in Laplace form Characteristic equation Poles

Three cases of general solution Overdamped (aperiodic) case: Critically damped case Oscillatory (periodic) case Critical resistance

Overdamped case Both poles are real and single. The time form of current Damping coefficient Voltages of capacitor and inductor

Graphical form of solution Examplary transients in RLC circuit for R = 2,3, C = 1F i L = 1H at E = 1V.

Transients of capacitor voltage and current in RC and RLC circuits

Critically damped case Double pole Laplace form of current solution

Time form of solution Current of inductor Voltage of inductor Voltage of capacitor

Comparison of uC(t) at overdamped and critically damped cases

Oscillatory case Both poles are complex. Laplace form of solution Self-oscillation frequency

Time solution Current of inductor Voltage of inductor Voltage of capacitor

Graphical form of solution

Transient uC(t) at different resistances in oscillatory case