Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
L27 April 241 Semiconductor Device Modeling & Characterization Lecture 27 Professor Ronald L. Carter Spring 2001.
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Field Effect Transistors
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Last Lecture – MOS Transistor Review (Chap. #3)
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
EXAMPLE 7.1 BJECTIVE Determine the total bias current on an IC due to subthreshold current. Assume there are 107 n-channel transistors on a single chip,
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

Flat-band parameters for p-channel (n-subst) ©rlc L35-29Apr2011

Fully biased p- channel VT calc ©rlc L35-29Apr2011

p-channel VT for VC = VB = 0 Fig 10.21* ©rlc L35-29Apr2011

Ion implantation ©rlc L35-29Apr2011

“Dotted box” approx ©rlc L35-29Apr2011

©rlc L35-29Apr2011

Mobilities ©rlc L35-29Apr2011

Differential charges for low and high freq From Fig 10.27* ©rlc L35-29Apr2011

Ideal low-freq C-V relationship Fig 10.25* ©rlc L35-29Apr2011

Comparison of low and high freq C-V Fig 10.28* ©rlc L35-29Apr2011

Effect of Q’ss on the C-V relationship Fig 10.29* ©rlc L35-29Apr2011

n-channel enhancement MOSFET in ohmic region 0< VT< VG Channel VS = 0 0< VD< VDS,sat EOx,x> 0 n+ e-e- e- e- e- n+ Depl Reg p-substrate Acceptors VB < 0 ©rlc L35-29Apr2011

Conductance of inverted channel Q’n = - C’Ox(VGC-VT) n’s = C’Ox(VGC-VT)/q, (# inv elect/cm2) The conductivity sn = (n’s/t) q mn G = sn(Wt/L) = n’s q mn (W/L) = 1/R, so I = V/R = dV/dR, dR = dL/(n’sqmnW) ©rlc L35-29Apr2011

Basic I-V relation for MOS channel ©rlc L35-29Apr2011

I-V relation for n-MOS (ohmic reg) ID non-physical ID,sat saturated VDS,sat VDS ©rlc L35-29Apr2011

Universal drain characteristic ID VGS=VT+3V 9ID1 ohmic saturated, VDS>VGS-VT VGS=VT+2V 4ID1 VGS=VT+1V ID1 VDS ©rlc L35-29Apr2011

Characterizing the n-ch MOSFET VD ID D G S B VT VGS ©rlc L35-29Apr2011

Low field ohmic characteristics ©rlc L35-29Apr2011

MOSFET Device Structre Fig. 4-1, M&A* ©rlc L35-29Apr2011

4-7a (A&M) ©rlc L35-29Apr2011

Figure 4-7b (A&M) ©rlc L35-29Apr2011

Figure 4-8a (A&M) ©rlc L35-29Apr2011

Figure 4-8b (A&M) ©rlc L35-29Apr2011

Body effect data Fig 9.9** ©rlc L35-29Apr2011

MOSFET equivalent circuit elements Fig 10.51* ©rlc L35-29Apr2011

n-channel enh. circuit model G RG Cgd RDS Cgs S RD D Cbd RB Cbs Idrain Cgb DSS DSD RB B ©rlc L35-29Apr2011

MOS small-signal equivalent circuit Fig 10.52* ©rlc L35-29Apr2011

MOSFET circuit parameters ©rlc L35-29Apr2011

MOSFET circuit parameters (cont) ©rlc L35-29Apr2011

Substrate bias effect on VT (body-effect) ©rlc L35-29Apr2011

Body effect data Fig 9.9** ©rlc L35-29Apr2011

Fully biased n- channel VT calc ©rlc L35-29Apr2011

Values for fms with silicon gate ©rlc L35-29Apr2011

Q’d,max and xd,max for biased MOS capacitor Fig 8.11** |Q’d,max|/q (cm-2) xd,max (microns) ©rlc L35-29Apr2011

I-V relation for n-MOS ohmic ID non-physical ID,sat saturated VDS,sat ©rlc L35-29Apr2011

MOS channel- length modulation Fig 11.5* ©rlc L35-29Apr2011

Analysis of channel length modulation ©rlc L35-29Apr2011

References CARM = Circuit Analysis Reference Manual, MicroSim Corporation, Irvine, CA, 1995. M&A = Semiconductor Device Modeling with SPICE, 2nd ed., by Paolo Antognetti and Giuseppe Massobrio, McGraw-Hill, New York, 1993. **M&K = Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986. *Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997 ©rlc L35-29Apr2011