Acadia NP Size – 7.4 Horiz – 2.0 Vert – 0.1.

Slides:



Advertisements
Similar presentations
9.2 Graphing Simple Rational Functions
Advertisements

Your Transformation Equation y = - a f(-( x ± h)) ± k - a = x-axis reflection a > 1 = vertical stretch 0 < a < 1 = vertical compression -x = y-axis reflection.
Horizontal and Vertical Distances
1.7 Transformations of Functions Ex. 1 Shifting Points in the Plane Shift the triangle three units to the right and two units up. What are the.
1 NC-DAQ Educational Opportunities Series 18 March 2015 Regional Haze Discussions and Issues in North Carolina.
Air Quality Monitor Networks 2014 Annual AQ Monitor Meeting MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION Protecting Maine’s Air, Land and Water.
Natural Background Visibility Feb. 6, 2004 Presentation to VISTAS State Air Directors Mt. Cammerer, Great Smoky Mtn. National Park.
Worst 20% Hazes Across the Country Based on IMPROVE Speciation Data by Marc Pitchford August 2001.
BACKGROUND AEROSOL CONCENTRATIONS AND VISIBILITY DEGRADATION IN THE UNITED STATES Rokjin Park Motivated by EPA Regional Haze Rule Quantifying uncontrollable.
Graphing Rational Equations (Yeay for Graphing) TS: Demonstrating Understanding of Concepts.
Section 4.1 – Rational Functions and Asymptotes
AIR QUALITY for the Interagency Wilderness Fire Resource Advisor 2011 SOUTHERN AREA ADVANCED FIRE AND AVIATION ACADEMY Discussion Topics: Very Brief Overview.
NARSTO PM Assessment NARSTO PM Assessment Chapter 5: Spatial and Temporal Pattern TOC Introduction Data Global Pattern NAM Dust NAM Smoke NAM Haze NAM.
Reason for Doing Cluster Analysis Identify similar and dissimilar aerosol monitoring sites so that we can test the ability of the Causes of Haze Assessment.
Results of Ambient Air Analyses in Support of Transport Rule Presentation for RPO Workshop November 2003.
We can break a vector down into 2 vectors. There are many possible ways of doing this for any vector!
Lessons Learned: One-Atmosphere Photochemical Modeling in Southeastern U.S. Presentation from Southern Appalachian Mountains Initiative to Meeting of Regional.
Incorporating Monitoring, Modeling, and EI Data into AoH Analysis AoH Meeting, Salt Lake City September 21-22, 2004 Air Resource Specialists, Inc.
Application of Combined Mathematical and Meteorological Receptor Models (UNMIX & Residence Time Analysis) to IMPROVE Aerosol Data from Brigantine.
Chemical Composition of PM2.5 over N. America Big Bend (scale 0-15 ug/m3) G.Smoky Mtn. Yellowstone Mammuth Cave Sequoia ? ?
MANE-VU states, Virginia and West Virginia Regional Haze Trend Analyses Latest available (December 2011) IMPROVE DATA (for TSC 5/22/2012) Tom.
Jenny Hand CIRA Acadia National Park, ME Interagency Monitoring of Protected Visual Environments (IMPROVE)
VISTAS Data / Monitoring Overview Scott Reynolds SC DHEC- Larry Garrison KY DNREP Data Workgroup Co-Chairs RPO National Technical Workgroup Meeting – St.
Exponential GrowthExponential Decay (0,a) Exponential Parent Fcn: Growth: b > 1 Decay: 0 < b < 1 H.Asymptote: y = 0 y-int is a_(1 on parent fcn) Shifts:
Recent PSD Experiences in SWRO Regulatory & Statutory Requirements Relationship with EPA Federal Land Managers - FLAG Appeals.
Factor the following completely: 1.3x 2 -8x x x x 3 +2x 2 -4x-8 5.2x 2 -x x (3x-2)(x-2) 11(x+3)(x-3) 16(x+2)(x 2.
NARSTO PM Assessment NARSTO PM Assessment Chapter 5: Spatial and Temporal Pattern TOC Introduction Data Global Pattern NAM Dust NAM Smoke NAM Haze NAM.
Graphing Rational Equations (Yeay for Graphing) TS: Demonstrating Understanding of Concepts Grab a whiteboard, a tissue for an eraser and marker on your.
Factoring Practice 1.x 2 – 16 2.x x x 2 – 10x x x (x – 4)(x + 4) (x + 3)(x 2 - 3x + 9) 5(5x 2 + 3) (x – 6)(x.
Air Quality Modeling for SAMI: July 1995 Episode Talat Odman, Ted Russell, Jim Wilkinson, Yueh-Jiun Yang, Jim Boylan, Alberto Mendoza.
Writing Equations of Lines. Find the equation of a line that passes through (2, -1) and (-4, 5).
Georgia Institute of Technology Sensitivity of Future Year Results to Boundary Conditions Jim Boylan, Talat Odman, Ted Russell February 6, 2001.
Georgia Institute of Technology SAMI Aerosol Modeling: Performance Evaluation & Future Year Simulations Talat Odman Georgia Institute of Technology SAMI.
VISTAS Modeling Overview Oct. 29, 2003
NARSTO PM Assessment NARSTO PM Assessment Chapter 5: Spatial and Temporal Pattern TOC Introduction Data Global Pattern NAM Dust NAM Smoke NAM Haze NAM.
Chap 5: 8 The Tow Truck. Model the Problem Forces on Car Cable Gravity Ramp Net Force.
NARSTO PM Assessment NARSTO PM Assessment Chapter 5: Spatial and Temporal Pattern TOC Introduction Data Global Pattern NAM Dust NAM Smoke NAM Haze NAM.
NARSTO PM Assessment NARSTO PM Assessment Chapter 5: Spatial and Temporal Pattern TOC Introduction Data Global Pattern NAM Dust NAM Smoke NAM Haze NAM.
Objectives: Be able to graph a quadratic function in vertex form Be able to write a quadratic function in vertex form (2 ways)
90 Vertical Horizontal Oblique line a b Angles a + b = 180 o Angles at a Point b = 115 o Angle a = 180 – 115 = 65 o.
Factor the following completely: 1.3x 2 -8x x x x 3 +2x 2 -4x-8 5.2x 2 -x x (3x-2)(x-2) 11(x+3)(x-3) 16(x+2)(x 2.
Regional Haze and Visibility in the Northeast and Mid-Atlantic States Northeast States for Coordinated Air Use Management (NESCAUM)
1 Recent MANE-VU Projections of Visibility for 2018 Gary Kleiman MANE-VU Stakeholder Briefing April 4, 2008 BWI.
8.2 The Reciprocal Function Family Honors. The Reciprocal Functions The Reciprocal function f(x) = x ≠0 D: {x|x ≠ 0} R: {y|y ≠ 0} Va: x = 0 Ha: y = 0.
MANE-VU Technical Overview
National RPO Technical Meeting June 9, 2005 Gary Kleiman, NESCAUM
A Basis for Control of BART Eligible Sources
Source Attribution for Southeastern US: Weight of Evidence
Factor the following completely:
Get out Ellipse: Notes Worksheet and complete #2 & #3 (Notes Sheet From Yesterday)
Sulfate Attribution Methods
Online Gifts Buy for wishes happy mother's day to yours choice and with happy gifts find here:
MANE-VU SIP Planning Meeting
8.3 Graph General Rational Functions
Factor the following completely:
ATMOSPHERIC AEROSOL: suspension of condensed-phase particles in air
بسم الله الرحمن الرحيم.
Essential Question: What are the different types of energy?
Lesson 5.3 Transforming Parabolas
8.2 Graph Simple Rational Functions
Sketching Graphs of Rational Functions
Dee1 View from back of back plate
Notes Over 9.3 Graphing a Rational Function (m < n)
VISTAS Modeling Overview
Lesson 5.3 Transforming Parabolas
Energy, Work & Power Energy Problems Day #1.
From a manuscript draft courtesy of Bill Malm, National Park Service
Physics Unit 6 2D Motion Key ideas.
8.2 Graph Simple Rational Functions
Acadia NP Size – 7.4 Horiz – 2.0 Vert – 0.1.
Presentation transcript:

Acadia NP Size – 7.4 Horiz – 2.0 Vert – 0.1

Moosehorn Size – 7.4 Horiz – 2.0 Vert – 0.1

Great Gulf Size – 7.4 Horiz – 2.0 Vert – 0.1

Lye Brook Size – 7.4 Horiz – 2.0 Vert – 0.1

Brigantine Size – 7.4 Horiz – 2.0 Vert – 0.1

Dolly Sods Size – 7.4 Horiz – 2.0 Vert – 0.1

Shenandoah Size – 7.4 Horiz – 2.0 Vert – 0.1

James River Size – 7.4 Horiz – 2.0 Vert – 0.1

(a) 20% Clearest Days (b) 20% Worst Days SIZE – 5.1 Position – 0.1 / 6.40 Horizontal - 0.1 / 0.1 Vertical Acadia NP

(a) 20% Clearest Days (b) 20% Worst Days SIZE – 5.1 Position – 0.1 / 6.40 Horizontal - 0.1 / 0.1 Vertical Moosehorn

(a) 20% Clearest Days (b) 20% Worst Days SIZE – 5.1 Position – 0.1 / 6.40 Horizontal - 0.1 / 0.1 Vertical Great Gulf

(a) 20% Clearest Days (b) 20% Worst Days SIZE – 5.1 Position – 0.1 / 6.40 Horizontal - 0.1 / 0.1 Vertical Lye Brook

(a) 20% Clearest Days (b) 20% Worst Days SIZE – 5.1 Position – 0.1 / 6.40 Horizontal - 0.1 / 0.1 Vertical Brigantine

(a) 20% Clearest Days (b) 20% Worst Days SIZE – 5.1 Position – 0.1 / 6.40 Horizontal - 0.1 / 0.1 Vertical Dolly Sods

(a) 20% Clearest Days (b) 20% Worst Days SIZE – 5.1 Position – 0.1 / 6.40 Horizontal - 0.1 / 0.1 Vertical Shenandoah NP

(a) 20% Clearest Days (b) 20% Worst Days SIZE – 5.1 Position – 0.1 / 6.40 Horizontal - 0.1 / 0.1 Vertical James River Face

a) 20% Best Visibility Days b) 20% Worst Visibility Days SIZE – 4.85 Position – 0.09 / 6.65 Horizontal - 1.15 / 1.15 Vertical

(a) Sulfate (b) Nitrate Acadia National Park (c) Carbonaceous Matter (d) Coarse Mass SIZE 3.7 POSITIONS 0.1 - 0.05 5.31 - 0.05 0.1 - 3.75 5.31 - 3.75

(a) Sulfate (b) Nitrate Moosehorn (c) Carbonaceous Matter (d) Coarse Mass SIZE 3.7 POSITIONS 0.1 - 0.05 5.31 - 0.05 0.1 - 3.75 5.31 - 3.75

(a) Sulfate (b) Nitrate Great Gulf (c) Carbonaceous Matter (d) Coarse Mass SIZE 3.7 POSITIONS 0.1 - 0.05 5.31 - 0.05 0.1 - 3.75 5.31 - 3.75

(a) Sulfate (b) Nitrate Lye Brook (c) Carbonaceous Matter (d) Coarse Mass SIZE 3.7 POSITIONS 0.1 - 0.05 5.31 - 0.05 0.1 - 3.75 5.31 - 3.75

(a) Sulfate (b) Nitrate Brigantine (c) Carbonaceous Matter (d) Coarse Mass SIZE 3.7 POSITIONS 0.1 - 0.05 5.31 - 0.05 0.1 - 3.75 5.31 - 3.75

(a) Sulfate (b) Nitrate Shenandoah NP (c) Carbonaceous Matter (d) Coarse Mass SIZE 3.7 POSITIONS 0.1 - 0.05 5.31 - 0.05 0.1 - 3.75 5.31 - 3.75

(a) Sulfate (b) Nitrate Dolly Sods (c) Carbonaceous Matter (d) Coarse Mass SIZE 3.7 POSITIONS 0.1 - 0.05 5.31 - 0.05 0.1 - 3.75 5.31 - 3.75

(a) Sulfate (b) Nitrate James River Face (c) Carbonaceous Matter (d) Coarse Mass SIZE 3.7 POSITIONS 0.1 - 0.05 5.31 - 0.05 0.1 - 3.75 5.31 - 3.75