Functions in C Math Library Functions Functions Function Definitions

Slides:



Advertisements
Similar presentations
BBS514 Structured Programming (Yapısal Programlama)1 Functions and Structured Programming.
Advertisements

Chapter 5 C Functions The best way to develop and maintain a large program is to divide it into several smaller program modules, each of which is more.
C Lecture Notes 1 Program Control (Cont...). C Lecture Notes 2 4.8The do / while Repetition Structure The do / while repetition structure –Similar to.
 2000 Prentice Hall, Inc. All rights reserved. Chapter 5 - Functions Outline 5.1Introduction 5.2Program Modules in C 5.3Math Library Functions 5.4Functions.
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved. Chapter 5 - Functions Outline 5.1Introduction 5.2Program.
 2000 Prentice Hall, Inc. All rights reserved. 1 Chapter 3 - Functions Outline 3.1Introduction 3.2Program Components in C++ 3.3Math Library Functions.
FunctionsFunctions Systems Programming. Systems Programming: Functions 2 Functions   Simple Function Example   Function Prototype and Declaration.
 2007 Pearson Education, Inc. All rights reserved C Functions.
 2007 Pearson Education, Inc. All rights reserved C Functions.
1 Review (Week1) C++_ the unit of programming is the class from which objects are eventually instantiated. C++ classes contain functions that implement.
C Lecture Notes Functions (Cont...). C Lecture Notes 5.8Calling Functions: Call by Value and Call by Reference Used when invoking functions Call by value.
Functions. 3Introduction Divide and conquer –Construct a program from smaller pieces or components –Each piece more manageable than the original program.
 2000 Prentice Hall, Inc. All rights reserved. Functions in C Outline 1Introduction 2Program Modules in C 3Math Library Functions 4Functions 5Function.
FunctionsFunctions Systems Programming Concepts. Functions   Simple Function Example   Function Prototype and Declaration   Math Library Functions.
Craps!. Example: A Game of Chance Craps simulator Rules – Roll two dice 7 or 11 on first throw, player wins 2, 3, or 12 on first throw, player loses 4,
1 Lecture 3 Part 1 Functions with math and randomness.
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved. C How To Program - 4th edition Deitels Class 05 University.
 2007 Pearson Education, Inc. All rights reserved C Functions.
Functions in C Outline 1Introduction 2Program Modules in C 3Math Library Functions 4Functions 5Function Definitions 6Function Prototypes 7Header Files.
Lecture 5 Introduction to Programming in C Arne Kutzner Hanyang University / Seoul Korea.
CMSC 1041 Functions II Functions that return a value.
1 CISC181 Introduction to Computer Science Dr. McCoy Lecture 6 September 17, 2009.
Chapter 5 - Functions Outline 5.1Introduction 5.2Program Modules in C 5.3Math Library Functions 5.4Functions 5.5Function Definitions 5.6Function Prototypes.
 2000 Prentice Hall, Inc. All rights reserved. 1 Chapter 3 - Functions Outline 3.1Introduction 3.2Program Components in C++ 3.3Math Library Functions.
 2003 Prentice Hall, Inc. All rights reserved. 1 Chapter 6 - Functions.
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved. Functions (Header files and Library Functions) Outline.
Lecture 13: Working with Multiple Programmers. Headers Header files: Each standard library has a corresponding header. The function prototype for all.
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved. Chapter 5 - Functions Outline 5.1Introduction 5.2Program.
Introduction As programmers, we don’t want to have to implement functions for every possible task we encounter. The Standard C library contains functions.
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved. 5.3Math Library Functions Math library functions –perform.
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved. Functions Outline 5.1Introduction 5.2Program Modules.
C++ Programming Lecture 9 Functions – Part I By Ghada Al-Mashaqbeh The Hashemite University Computer Engineering Department.
1 Chapter 3 - Functions Outline 3.1Introduction 3.2Program Components in C++ 3.3Math Library Functions 3.4Functions 3.5Function Definitions 3.6Function.
KIC/Computer Programming & Problem Solving 1.  Introduction  Program Modules in C  Math Library Functions  Functions  Function Definitions  Function.
EPSII 59:006 Spring Call-by-value example #include void increment(int); //prototype for increment function int main(void) { int a=1; printf("Value.
KIC/Computer Programming & Problem Solving 1.  Header Files  Storage Classes  Scope Rules  Recursion Outline KIC/Computer Programming & Problem Solving.
 2000 Prentice Hall, Inc. All rights reserved. 5.2Program Modules in C Functions –Modules in C –Programs combine user-defined functions with library functions.
Dale Roberts CSCI 230 Functions Department of Computer and Information Science, School of Science, IUPUI Dale Roberts, Lecturer
 2000 Prentice Hall, Inc. All rights reserved. 1 Chapter 3 - Functions.
 2000 Prentice Hall, Inc. All rights reserved Introduction Divide and conquer –Construct a program from smaller pieces or components –Each piece.
Operators and Expressions. Introduction C operators can be classified into a number of categories 1.Arithmetic(+, -, *, /, %) 2.Relational (, >=, ==,
Operators and Expressions
Dale Roberts CSCI N305 Functions Declarations Department of Computer and Information Science, School of Science, IUPUI.
 2003 Prentice Hall, Inc. All rights reserved. 1 Functions and Recursion Outline Introduction Program Components in C++ Math Library Functions Functions.
L131 Assignment Operators Topics Increment and Decrement Operators Assignment Operators Debugging Tips rand( ) math library functions Reading Sections.
BIL 104E Introduction to Scientific and Engineering Computing Lecture 4.
Functions Course conducted by: Md.Raihan ul Masood
Mathematical Functions
Type casting Algorithm & flowchart
5 C Functions.
Chapter 3 - Functions Outline 3.1 Introduction
TMF1414 Introduction to Programming
© 2016 Pearson Education, Ltd. All rights reserved.
Functions, Part 2 of 2 Topics Functions That Return a Value
Number guessing game Pick a random number between 1 and 10
CSC113: Computer Programming (Theory = 03, Lab = 01)
Deitel- C:How to Program (5ed)
Functions.
Chapter 5 - Functions Outline 5.1 Introduction
Chapter 5 - Functions Outline 5.1 Introduction
Functions.
Chapter 5 - Functions Outline 5.1 Introduction
Functions Declarations CSCI 230
توابع در C++ قسمت اول اصول كامپيوتر 1.
Chapter 6 - Functions Outline 5.1 Introduction
Assignment Operators Topics Increment and Decrement Operators
Assignment Operators Topics Increment and Decrement Operators
Assignment Operators Topics Increment and Decrement Operators
Chapter 3 - Functions Outline 3.1 Introduction
Functions that return a value
Presentation transcript:

Functions in C Math Library Functions Functions Function Definitions Function Prototypes Header Files Calling Functions: Call by Value and Call by Reference Random Number Generation Example: A Game of Chance

Math Library Functions perform common mathematical calculations #include <math.h> Format for calling functions FunctionName (argument); If multiple arguments, use comma-separated list printf( "%.2f", sqrt( 900.0 ) ); Calls function sqrt, which returns the square root of its argument All math functions return data type double Arguments may be constants, variables, or expressions

Math Library Functions double acos(double x) -- Compute arc cosine of x. double asin(double x) -- Compute arc sine of x. double atan(double x) -- Compute arc tangent of x. double atan2(double y, double x) -- Compute arc tangent of y/x. double ceil(double x) -- Get smallest integral value that exceeds x. double cos(double x) -- Compute cosine of angle in radians. double cosh(double x) -- Compute the hyperbolic cosine of x. div_t div(int number, int denom) -- Divide one integer by another. double exp(double x -- Compute exponential of x double fabs (double x ) -- Compute absolute value of x. double floor(double x) -- Get largest integral value less than x. double fmod(double x, double y) -- Divide x by y with integral quotient and return remainder. double frexp(double x, int *expptr) -- Breaks down x into mantissa and exponent of no. labs(long n) -- Find absolute value of long integer n. double ldexp(double x, int exp) -- Reconstructs x out of mantissa and exponent of two. ldiv_t ldiv(long number, long denom) -- Divide one long integer by another. double log(double x) -- Compute log(x). double log10 (double x ) -- Compute log to the base 10 of x. double modf(double x, double *intptr) -- Breaks x into fractional and integer parts. double pow (double x, double y) -- Compute x raised to the power y. double sin(double x) -- Compute sine of angle in radians. double sinh(double x) - Compute the hyperbolic sine of x. double sqrt(double x) -- Compute the square root of x. void srand(unsigned seed) -- Set a new seed for the random number generator (rand). double tan(double x) -- Compute tangent of angle in radians. double tanh(double x) -- Compute the hyperbolic tangent of x. http://www.cs.cf.ac.uk/Dave/C/node17.html#SECTION001710000000000000000

Function definition format Function Definitions Function definition format return-value-type function-name( parameter-list ) { declarations and statements } Function-name: any valid identifier Return-value-type: data type of the result (default int) void - function returns nothing Parameter-list: comma separated list, declares parameters (default int)

Function definition format (continued) return-value-type function-name( parameter-list ) { declarations and statements } Declarations and statements: function body (block) Variables can be declared inside blocks (can be nested) Function can not be defined inside another function Returning control If nothing returned return; or, until reaches right brace If something returned return expression;

1. Function prototype (3 parameters) 1 /* 2 Finding the maximum of three integers */ 3 #include <stdio.h> 4 5 int maximum( int, int, int ); /* function prototype */ 6 7 int main() 8 { 9 int a, b, c; 10 11 printf( "Enter three integers: " ); 12 scanf( "%d%d%d", &a, &b, &c ); 13 printf( "Maximum is: %d\n", maximum( a, b, c ) ); 14 15 return 0; 16 } 17 18 /* Function maximum definition */ 19 int maximum( int x, int y, int z ) 20 { 21 int max = x; 22 23 if ( y > max ) 24 max = y; 25 26 if ( z > max ) 27 max = z; 28 29 return max; 30 } 1. Function prototype (3 parameters) 2. Input values 2.1 Call function Function definition Program Output Enter three integers: 22 85 17 Maximum is: 85

Promotion rules and conversions Function Prototypes Function prototype Function name Parameters - what the function takes in Return type - data type function returns (default int) Used to validate functions Prototype only needed if function definition comes after use in program int maximum( int, int, int ); Takes in 3 ints Returns an int Promotion rules and conversions Converting to lower types can lead to errors

Header Files Header files Custom header files contain function prototypes for library functions <stdlib.h> , <math.h> , etc Load with #include <filename> #include <math.h> Custom header files Create file with functions Save as filename.h Load in other files with #include "filename.h" Reuse functions

Calling Functions: Call by Value and Call by Reference Used when invoking functions Call by value Copy of argument passed to function Changes in function do not effect original Use when function does not need to modify argument Avoids accidental changes Call by reference Passes original argument Changes in function effect original Only used with trusted functions For now, we focus on call by value

Random Number Generation rand function Load <stdlib.h> Returns "random" number between 0 and RAND_MAX (at least 32767) i = rand(); Pseudorandom Preset sequence of "random" numbers Same sequence for every function call Scaling To get a random number between 1 and n 1 + ( rand() % n ) rand % n returns a number between 0 and n-1 Add 1 to make random number between 1 and n 1 + ( rand() % 6) // number between 1 and 6

Random Number Generation (II) srand function <stdlib.h> Takes an integer seed - jumps to location in "random" sequence srand( seed ); srand( time( NULL ) ); //load <time.h> time( NULL )- time program was compiled in seconds "randomizes" the seed

2.1 Use srand to change random sequence 1 /* 2 Randomizing die-rolling program */ 3 #include <stdlib.h> 4 #include <stdio.h> 5 6 int main() 7 { 8 int i; 9 unsigned seed; 10 11 printf( "Enter seed: " ); 12 scanf( "%u", &seed ); 13 srand( seed ); 14 15 for ( i = 1; i <= 10; i++ ) { 16 printf( "%10d", 1 + ( rand() % 6 ) ); 17 18 if ( i % 5 == 0 ) 19 printf( "\n" ); 20 } 21 22 return 0; 23 } 1. Initialize seed 2. Input value for seed 2.1 Use srand to change random sequence 2.2 Define Loop 3. Generate and output random numbers

Program Output Enter seed: 67 6 1 4 6 2 1 6 1 6 4 Enter seed: 867 6 1 4 6 2 1 6 1 6 4 Program Output Enter seed: 867 2 4 6 1 6 1 1 3 6 2   Enter seed: 67 6 1 4 6 2 1 6 1 6 4

Example: A Game of Chance Craps simulator Rules Roll two dice 7 or 11 on first throw, player wins 2, 3, or 12 on first throw, player loses 4, 5, 6, 8, 9, 10 - value becomes player's "point" Player must roll his point before rolling 7 to win

2. Define switch statement for win/loss/continue 1 /* 2 Craps */ 3 #include <stdio.h> 4 #include <stdlib.h> 5 #include <time.h> 6 7 int rollDice( void ); 8 9 int main() 10 { 11 int gameStatus, sum, myPoint; 12 13 srand( time( NULL ) ); 14 sum = rollDice(); /* first roll of the dice */ 15 16 switch ( sum ) { 17 case 7: case 11: /* win on first roll */ 18 gameStatus = 1; 19 break; 20 case 2: case 3: case 12: /* lose on first roll */ 21 gameStatus = 2; 22 break; 23 default: /* remember point */ 24 gameStatus = 0; 25 myPoint = sum; 26 printf( "Point is %d\n", myPoint ); 27 break; 28 } 29 30 while ( gameStatus == 0 ) { /* keep rolling */ 31 sum = rollDice(); 32 1. rollDice prototype 1.1 Initialize variables 1.2 Seed srand 2. Define switch statement for win/loss/continue 2.1 Loop

2.2 Print win/loss Program Output 33 if ( sum == myPoint ) /* win by making point */ 34 gameStatus = 1; 35 else 36 if ( sum == 7 ) /* lose by rolling 7 */ 37 gameStatus = 2; 38 } 39 40 if ( gameStatus == 1 ) 41 printf( "Player wins\n" ); 42 else 43 printf( "Player loses\n" ); 44 45 return 0; 46 } 47 48 int rollDice( void ) 49 { 50 int die1, die2, workSum; 51 52 die1 = 1 + ( rand() % 6 ); 53 die2 = 1 + ( rand() % 6 ); 54 workSum = die1 + die2; 55 printf( "Player rolled %d + %d = %d\n", die1, die2, workSum ); 56 return workSum; 57 } 2.2 Print win/loss Program Output Player rolled 6 + 5 = 11 Player wins

Program Output Player rolled 6 + 6 = 12 Player loses Point is 10 Player rolled 2 + 4 = 6 Player rolled 6 + 5 = 11 Player rolled 3 + 3 = 6 Player rolled 6 + 4 = 10 Player wins Program Output Player rolled 1 + 3 = 4 Point is 4 Player rolled 1 + 4 = 5 Player rolled 5 + 4 = 9 Player rolled 4 + 6 = 10 Player rolled 6 + 3 = 9 Player rolled 1 + 2 = 3 Player rolled 5 + 2 = 7 Player loses