Ensuring Security in Critical Infrastructures with Probabilistic Relational Modeling Part 2 Summer School “Hot Topics in Cyber Security” Rome Ralf Möller.

Slides:



Advertisements
Similar presentations
1 MPE and Partial Inversion in Lifted Probabilistic Variable Elimination Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir.
Advertisements

Variational Methods for Graphical Models Micheal I. Jordan Zoubin Ghahramani Tommi S. Jaakkola Lawrence K. Saul Presented by: Afsaneh Shirazi.
CS498-EA Reasoning in AI Lecture #15 Instructor: Eyal Amir Fall Semester 2011.
“Using Weighted MAX-SAT Engines to Solve MPE” -- by James D. Park Shuo (Olivia) Yang.
Bucket Elimination: A Unifying Framework for Probabilistic Inference By: Rina Dechter Presented by: Gal Lavee.
1 MPE and Partial Inversion in Lifted Probabilistic Variable Elimination Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir.
CPSC 322, Lecture 30Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 30 March, 25, 2015 Slide source: from Pedro Domingos UW.
MPE, MAP AND APPROXIMATIONS Lecture 10: Statistical Methods in AI/ML Vibhav Gogate The University of Texas at Dallas Readings: AD Chapter 10.
Lifted First-Order Probabilistic Inference Rodrigo de Salvo Braz, Eyal Amir and Dan Roth This research is supported by ARDA’s AQUAINT Program, by NSF grant.
GS 540 week 6. HMM basics Given a sequence, and state parameters: – Each possible path through the states has a certain probability of emitting the sequence.
Recent Development on Elimination Ordering Group 1.
Hidden Markov Model Special case of Dynamic Bayesian network Single (hidden) state variable Single (observed) observation variable Transition probability.
CSE 574 – Artificial Intelligence II Statistical Relational Learning Instructor: Pedro Domingos.
1 Bayesian Reasoning Chapter 13 CMSC 471 Adapted from slides by Tim Finin and Marie desJardins.
Constructing Belief Networks: Summary [[Decide on what sorts of queries you are interested in answering –This in turn dictates what factors to model in.
5/25/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005.
CS 188: Artificial Intelligence Spring 2007 Lecture 14: Bayes Nets III 3/1/2007 Srini Narayanan – ICSI and UC Berkeley.
CS 188: Artificial Intelligence Fall 2006 Lecture 17: Bayes Nets III 10/26/2006 Dan Klein – UC Berkeley.
Aspects of Bayesian Inference and Statistical Disclosure Control in Python Duncan Smith Confidentiality and Privacy Group CCSR University of Manchester.
Ahsanul Haque *, Swarup Chandra *, Latifur Khan * and Charu Aggarwal + * Department of Computer Science, University of Texas at Dallas + IBM T. J. Watson.
Relational Probability Models Brian Milch MIT 9.66 November 27, 2007.
Ahsanul Haque *, Swarup Chandra *, Latifur Khan * and Michael Baron + * Department of Computer Science, University of Texas at Dallas + Department of Mathematical.
Undirected Models: Markov Networks David Page, Fall 2009 CS 731: Advanced Methods in Artificial Intelligence, with Biomedical Applications.
第十讲 概率图模型导论 Chapter 10 Introduction to Probabilistic Graphical Models
1 MPE and Partial Inversion in Lifted Probabilistic Variable Elimination Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir.
Markov Logic And other SRL Approaches
1 Variable Elimination Graphical Models – Carlos Guestrin Carnegie Mellon University October 11 th, 2006 Readings: K&F: 8.1, 8.2, 8.3,
Maximum Entropy (ME) Maximum Entropy Markov Model (MEMM) Conditional Random Field (CRF)
Lifted First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International joint work with Eyal Amir and Dan Roth.
The Expert System Shell SPIRIT Presented by Poom Samaharn I-MMIS
1 Lifted First-Order Probabilistic Inference Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir and Dan Roth.
Probabilistic Networks Chapter 14 of Dechter’s CP textbook Speaker: Daniel Geschwender April 1, 2013 April 1&3, 2013DanielG--Probabilistic Networks1.
Simultaneously Learning and Filtering Juan F. Mancilla-Caceres CS498EA - Fall 2011 Some slides from Connecting Learning and Logic, Eyal Amir 2006.
Probabilistic Graphical Models seminar 15/16 ( ) Haim Kaplan Tel Aviv University.
Exact Inference in Bayes Nets. Notation U: set of nodes in a graph X i : random variable associated with node i π i : parents of node i Joint probability:
First-Order Probabilistic Inference Rodrigo de Salvo Braz.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 24 of 41 Monday, 18 October.
Today Graphical Models Representing conditional dependence graphically
1 Structure Learning (The Good), The Bad, The Ugly Inference Graphical Models – Carlos Guestrin Carnegie Mellon University October 13 th, 2008 Readings:
First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International.
Daphne Koller Overview Maximum a posteriori (MAP) Probabilistic Graphical Models Inference.
1 Variable Elimination Graphical Models – Carlos Guestrin Carnegie Mellon University October 15 th, 2008 Readings: K&F: 8.1, 8.2, 8.3,
CS498-EA Reasoning in AI Lecture #23 Instructor: Eyal Amir Fall Semester 2011.
Happy Mittal Advisor : Parag Singla IIT Delhi Lifted Inference Rules With Constraints.
Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk
Probabilistic Inference Modulo Theories
Inference in Bayesian Networks
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 30
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 14
Artificial Intelligence
Quizzz Rihanna’s car engine does not start (E).
Data Mining Lecture 11.
CAP 5636 – Advanced Artificial Intelligence
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 18
Lifted First-Order Probabilistic Inference [de Salvo Braz, Amir, and Roth, 2005] Daniel Lowd 5/11/2005.
Probability Topics Random Variables Joint and Marginal Distributions
Readings: K&F: 15.1, 15.2, 15.3, 15.4, 15.5 K&F: 7 (overview of inference) K&F: 8.1, 8.2 (Variable Elimination) Structure Learning in BNs 3: (the good,
Where did we stop? The Bayes decision rule guarantees an optimal classification… … But it requires the knowledge of P(ci|x) (or p(x|ci) and P(ci)) We.
Instructors: Fei Fang (This Lecture) and Dave Touretzky
CS 188: Artificial Intelligence Fall 2008
CAP 5636 – Advanced Artificial Intelligence
CS 188: Artificial Intelligence Fall 2007
CS 188: Artificial Intelligence
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 14
CS 188: Artificial Intelligence Fall 2008
Junction Trees 3 Undirected Graphical Models
Markov Networks.
Variable Elimination Graphical Models – Carlos Guestrin
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 14
Tanya Braun, Marcel Gehrke, Ralf Möller Universität zu Lübeck
Presentation transcript:

Ensuring Security in Critical Infrastructures with Probabilistic Relational Modeling Part 2 Summer School “Hot Topics in Cyber Security” Rome Ralf Möller Joint work with Tanya Braun and Marcel Gehrke Universität zu Lübeck Institute of Information Systems

Agenda Part 1 Propositional probabilistic models Part 2 Relational probabilistic models (for cyber security) How to increase modeling power Formal inference problems for LLC (and HOC) How to achieve reasoning scalability How to support learning (to some extent)

Defining Probability Distributions Given: States s = s1, s2, …, sn Distribution ps = (p1, p2, …, pn) Maximum Entropy Principle: W/o further information, select ps , s.t. entropy is maximized w.r.t. k constraints (expected values of features) ps(s) log ps(s) = ps(s) fi(s) = Di i ∈ {1..k}

Maximum Entropy Principle Maximize Lagrange functional for determining ps Partial derivatives of L w.r.t. ps  roots: where Z is for normalization (Boltzmann-Gibbs distribution) "Global" modeling: additions/changes to constraints/rules influence the whole joint probability distribution States are mutually exclusive ps(s) fi(s) ps(s)-1) ps(s) Features Weights

Propositional Models: Worlds Characterise world by random variables E.g., 𝐸𝑝𝑖𝑑 Possible values (range): 𝑟 𝐸𝑝𝑖𝑑 = 𝑡𝑟𝑢𝑒,𝑓𝑎𝑙𝑠𝑒 1 world = specific values for variables Probability per world Joint probability distribution 𝑃 𝐹 over all possible worlds 𝑀𝑎𝑛.𝑤𝑎𝑟 𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠 𝑁𝑎𝑡.𝑓𝑙𝑜𝑜𝑑 𝑁𝑎𝑡.𝑓𝑖𝑟𝑒 𝐸𝑝𝑖𝑑 Vocabulary 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 2 𝟐 𝟗 =𝟓𝟏𝟐 possible worlds

Propositional Models: Factors Full joint 𝑃 𝐹 as product of factors Model 𝐹 𝑟𝑣 𝐹 , 𝑟𝑣(𝑓) random variables in 𝐹,𝑓 Range 𝑟 𝑋 Sparse encoding! 𝑓 1 1 𝑓 2 1 𝑓 3 1 𝑓 1 2 𝑓 1 3 𝑓 1 4 𝑓 3 2 𝑁𝑎𝑡.𝑓𝑙𝑜𝑜𝑑 𝑁𝑎𝑡.𝑓𝑖𝑟𝑒 𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠 𝑀𝑎𝑛.𝑤𝑎𝑟 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 2 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑃 𝐹 = 1 𝑍 𝑖=1 𝑛 𝑓 𝑖 𝑍= 𝑣∈𝑟(𝑟𝑣 𝐹 ) 𝑖=1 𝑛 𝑓 𝑖 ( 𝜋 𝑟𝑣 𝑓 𝑖 (𝑣)) Hammersley-Clifford Theorem Multiplication: join over shared arguments 𝟕∙ 𝟐 𝟑 =𝟓𝟔 entries

Undirected Propositional Models Factors Potentials 𝑓 2 1 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑆𝑖𝑐𝑘.𝑒𝑣𝑒,𝐸𝑝𝑖𝑑 𝑓 1 1 𝑓 2 1 𝑓 3 1 𝑓 1 2 𝑓 1 3 𝑓 1 4 𝑓 3 2 𝑁𝑎𝑡.𝑓𝑙𝑜𝑜𝑑 𝑁𝑎𝑡.𝑓𝑖𝑟𝑒 𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠 𝑀𝑎𝑛.𝑤𝑎𝑟 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 2 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓 2 1 false 5 true 4 6 2 9 Potentials: compatability Table denotes compatibility of values

Query Answering (QA): Queries Marginal distribution 𝑃 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒, 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 Conditional distribution 𝑃 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝐸𝑝𝑖𝑑) 𝑃 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒=𝑡𝑟𝑢𝑒) Most probable assignment MPE: 𝑅=𝑟𝑣(𝐹) MAP: 𝑅={𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠} 𝑓 1 1 𝑓 2 1 𝑓 3 1 𝑓 1 2 𝑓 1 3 𝑓 1 4 𝑓 3 2 𝑁𝑎𝑡.𝑓𝑙𝑜𝑜𝑑 𝑁𝑎𝑡.𝑓𝑖𝑟𝑒 𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠 𝑀𝑎𝑛.𝑤𝑎𝑟 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 2 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 Argmax and sum not commutative argmax 𝑣∈𝑟(𝑅) 𝑣∈𝑟(𝑅) 𝑃 𝐹 (𝑣) , 𝑅⊆𝑟𝑣 𝐹

QA: Variable Elimination (VE) Zhang and Poole (1994), Dechter (1999) Eliminate all variables not appearing in query Through summing out E.g., marginal 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑓 1 1 𝑓 2 1 𝑓 3 1 𝑓 1 2 𝑓 1 3 𝑓 1 4 𝑓 3 2 𝑁𝑎𝑡.𝑓𝑙𝑜𝑜𝑑 𝑁𝑎𝑡.𝑓𝑖𝑟𝑒 𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠 𝑀𝑎𝑛.𝑤𝑎𝑟 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 2 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 ∝ 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑠∈𝑟 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑚 1 ∈𝑟 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 𝑚 2 ∈𝑟(𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 2 ) 𝑜∈𝑟(𝑁𝑎𝑡.𝑓𝑙𝑜𝑜𝑑) 𝑖∈𝑟(𝑁𝑎𝑡.𝑓𝑖𝑟𝑒) 𝑤∈𝑟(𝑀𝑎𝑛.𝑤𝑎𝑟) 𝑣∈𝑟(𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠) 𝑃 𝐹 Sum out all variables but Travel.eve

QA: Variable Elimination (VE) Zhang and Poole (1994) 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 ∝ 𝑒∈𝑟(𝐸𝑝𝑖𝑑) 𝑠∈𝑟(𝑆𝑖𝑐𝑘.𝑒𝑣𝑒) 𝑓 2 1 (𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒,𝑠) 𝑚 1 ∈𝑟(𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 ) 𝑓 3 1 (𝑒,𝑠, 𝑚 1 ) 𝑚 2 ∈𝑟(𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 2 ) 𝑓 3 2 (𝑒,𝑠, 𝑚 2 ) 𝑜∈𝑟(𝑁𝑎𝑡.𝑓𝑙𝑜𝑜𝑑) 𝑖∈𝑟(𝑁𝑎𝑡.𝑓𝑖𝑟𝑒) 𝑤∈𝑟(𝑀𝑎𝑛.𝑤𝑎𝑟) 𝑓 1 1 (𝑜, 𝑤,𝑒) 𝑓 1 2 ( 𝑖, 𝑤,𝑒) 𝑓 1 ′ (𝑒) Eliminating m1, m2 is identical 𝑣∈𝑟(𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠) 𝑓 1 3 (𝑜, 𝑣,𝑒) 𝑓 1 4 (𝑖, 𝑣,𝑒) 𝑣∈𝑟(𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠) 𝑓 1 ′ (𝑜, 𝑖, 𝑣,𝑒) 𝑓 1 ′ (𝑜, 𝑖,𝑒)

QA: Variable Elimination (VE) Zhang and Poole (1994) 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 ∝ 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑠∈𝑟 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓 2 1 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒,𝑠 𝑓 3 ′ 𝑒,𝑠 𝑓 3 ′′ 𝑒,𝑠 = 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑠∈𝑟 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒,𝑠 𝑓 1 ′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓′ false 50 true 10 34 16 54 36 12 69 𝐸𝑝𝑖𝑑 𝑓 2 1 𝑓 ′ 𝑓 3 ′ 𝑓 3 ′′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒

QA: Variable Elimination (VE) Zhang and Poole (1994) 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 ∝ 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑠∈𝑟 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓 2 1 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒,𝑠 𝑓 3 ′ 𝑒,𝑠 𝑓 3 ′′ 𝑒,𝑠 = 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑠∈𝑟 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒,𝑠 𝑓 1 ′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓′ ∑ false 50 60 true 10 34 16 54 90 36 12 81 69 𝐸𝑝𝑖𝑑 𝑓 ′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒

QA: Variable Elimination (VE) Zhang and Poole (1994) 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 ∝ 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑠∈𝑟 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓 2 1 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒,𝑠 𝑓 3 ′ 𝑒,𝑠 𝑓 3 ′′ 𝑒,𝑠 = 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑠∈𝑟 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒,𝑠 = 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑓′′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒 = 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓′′′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒 𝑓 1 ′ 𝐸𝑝𝑖𝑑 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝐸𝑝𝑖𝑑 𝑓′′′ false 90 true 100 135 162 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝐸𝑝𝑖𝑑 𝑓′′ false 60 true 50 90 81 Epid False 1.5 True 2 𝑓 ′′ 𝑓 ′′′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒

QA: Variable Elimination (VE) Zhang and Poole (1994) 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 ∝ 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑠∈𝑟 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓 2 1 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒,𝑠 𝑓 3 ′ 𝑒,𝑠 𝑓 3 ′′ 𝑒,𝑠 = 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑠∈𝑟 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒,𝑠 = 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑓′′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒 = 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓′′′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒 𝐸𝑝𝑖𝑑 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝐸𝑝𝑖𝑑 𝑓′′′ ∑ false 90 190 true 100 135 297 162 Epid False 1.5 True 2 𝑓 ′′′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒

QA: Variable Elimination (VE) Zhang and Poole (1994) 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 ∝ 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑠∈𝑟 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓 2 1 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒,𝑠 𝑓 3 ′ 𝑒,𝑠 𝑓 3 ′′ 𝑒,𝑠 = 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑠∈𝑟 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒,𝑠 = 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓 1 ′ 𝑒 𝑓′′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒 = 𝑒∈𝑟 𝐸𝑝𝑖𝑑 𝑓′′′ 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝑒 =𝑓 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 = 𝑓 𝑛 (𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒) Epid False 1.5 True 2 𝑓 𝑓 𝑛 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑓 false 190 true 297 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑓 𝑛 false 0.39 true 0.61 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒

QA: Variable Elimination (VE) Zhang and Poole (1994) Eliminate all variables not appearing in query Through summing out E.g., conditional 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝐸𝑝𝑖𝑑= 𝑡𝑟𝑢𝑒) Absorb 𝐸𝑝𝑖𝑑=𝑡𝑟𝑢𝑒 in all factors Sum out remaining variables 𝑓 1 1 𝑓 2 1 𝑓 3 1 𝑓 1 2 𝑓 1 3 𝑓 1 4 𝑓 3 2 𝑁𝑎𝑡.𝑓𝑙𝑜𝑜𝑑 𝑁𝑎𝑡.𝑓𝑖𝑟𝑒 𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠 𝑀𝑎𝑛.𝑤𝑎𝑟 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 2 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑡𝑟𝑢𝑒

QA: Evidence Absorption Zhang and Poole (1994) Absorb 𝐸𝑝𝑖𝑑=𝑡𝑟𝑢𝑒 in all factors, e.g., 𝑓 2 1 Possiby eliminate variable Eliminate remaining variables… 𝑓 1 1 𝑓 2 1 𝑓 3 1 𝑓 1 2 𝑓 1 3 𝑓 1 4 𝑓 3 2 𝑁𝑎𝑡.𝑓𝑙𝑜𝑜𝑑 𝑁𝑎𝑡.𝑓𝑖𝑟𝑒 𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠 𝑀𝑎𝑛.𝑤𝑎𝑟 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 2 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 𝑡𝑟𝑢𝑒 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓 2 1 false 4 true 6 2 9 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓 2 1 false true 4 6 2 9 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓 2 1 false 5 0 true 0 0 4 6 4 0 6 0 2 9 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑓 2 1 false 5 true 4 6 2 9

Problem: Models Explode 𝑓 1 1 𝑓 2 1 𝑓 3 1 𝑓 1 2 𝑓 1 3 𝑓 1 4 𝑓 3 2 𝑁𝑎𝑡.𝑓𝑙𝑜𝑜𝑑 𝑁𝑎𝑡.𝑓𝑖𝑟𝑒 𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠 𝑀𝑎𝑛.𝑤𝑎𝑟 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 2 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝟕∙𝟐 𝟑 =𝟓𝟔 entries in 7 factors, 9 variables

Problem: Models Explode 𝑓 1 1 𝑓 2 1 𝑓 3 1 𝑓 1 2 𝑓 1 3 𝑓 1 4 𝑓 3 2 𝑁𝑎𝑡.𝑓𝑙𝑜𝑜𝑑 𝑁𝑎𝑡.𝑓𝑖𝑟𝑒 𝑀𝑎𝑛.𝑣𝑖𝑟𝑢𝑠 𝑀𝑎𝑛.𝑤𝑎𝑟 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 2 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚 1 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑇𝑟𝑎𝑣𝑒𝑙.𝑎𝑙𝑖𝑐𝑒 𝑇𝑟𝑒𝑎𝑡.𝑎𝑙𝑖𝑐𝑒. 𝑚 2 𝑇𝑟𝑒𝑎𝑡.𝑎𝑙𝑖𝑐𝑒. 𝑚 1 𝑆𝑖𝑐𝑘.𝑎𝑙𝑖𝑐𝑒 𝑇𝑟𝑎𝑣𝑒𝑙.𝑏𝑜𝑏 𝑇𝑟𝑒𝑎𝑡.𝑏𝑜𝑏. 𝑚 2 𝑇𝑟𝑒𝑎𝑡.𝑏𝑜𝑏. 𝑚 1 𝑆𝑖𝑐𝑘.𝑏𝑜𝑏 𝟏𝟑∙𝟐 𝟑 =𝟏𝟎𝟒 entries in 13 factors, 17 variables

Solution: Lifting Parameterised random variables = PRV Poole (2003) Parameterised random variables = PRV With logical variables E.g., 𝑋 Possible values (domain): 𝒟 𝑋 ={𝑎𝑙𝑖𝑐𝑒, 𝑒𝑣𝑒, 𝑏𝑜𝑏} Inputs to factors! 𝐸𝑝𝑖𝑑 𝑁𝑎𝑡(𝐴) 𝑀𝑎𝑛(𝑊) 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝑆𝑖𝑐𝑘(𝑋) 𝑇𝑟𝑒𝑎𝑡(𝑋,𝑀)

Solution: Lifting Sparse encoding! Factors with PRVs = parfactors Poole (2003) Factors with PRVs = parfactors (Graphical) Model G E.g., 𝑔 2 Sparse encoding! 𝐸𝑝𝑖𝑑 𝑁𝑎𝑡(𝐷) 𝑀𝑎𝑛(𝑊) 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝑆𝑖𝑐𝑘(𝑋) 𝑇𝑟𝑒𝑎𝑡(𝑋,𝑀) 𝑔 1 𝑔 2 𝑔 3 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘(𝑋) 𝑔 2 false 5 true 4 6 2 9 𝟑∙𝟐 𝟑 =𝟐𝟒 entries in 3 parfactors, 6 PRVs

Solution: Lifting Grounding E.g., 𝑔𝑟(𝑔 2 )= 𝑓 2 1 , 𝑓 2 2 , 𝑓 2 3 Poole (2003) Grounding E.g., 𝑔𝑟(𝑔 2 )= 𝑓 2 1 , 𝑓 2 2 , 𝑓 2 3 𝑇𝑟𝑎𝑣𝑒𝑙(𝑒𝑣𝑒) 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘(𝑒𝑣𝑒) 𝑓 2 1 false 5 true 4 6 2 9 𝑇𝑟𝑎𝑣𝑒𝑙(𝑏𝑜𝑏) 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘(𝑏𝑜𝑏) 𝑓 2 3 false 5 true 4 6 2 9 𝐸𝑝𝑖𝑑 𝑁𝑎𝑡(𝐷) 𝑀𝑎𝑛(𝑊) 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝑆𝑖𝑐𝑘(𝑋) 𝑇𝑟𝑒𝑎𝑡(𝑋,𝑀) 𝑔 1 𝑔 2 𝑔 3 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘(𝑋) 𝑔 2 false 5 true 4 6 2 9 𝑇𝑟𝑎𝑣𝑒𝑙(𝑎𝑙𝑖𝑐𝑒) 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘(𝑎𝑙𝑖𝑐𝑒) 𝑓 2 2 false 5 true 4 6 2 9

Solution: Lifting Joint probability distribution P 𝐺 by grounding Poole (2003) Joint probability distribution P 𝐺 by grounding 𝐸𝑝𝑖𝑑 𝑁𝑎𝑡(𝐷) 𝑀𝑎𝑛(𝑊) 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝑆𝑖𝑐𝑘(𝑋) 𝑇𝑟𝑒𝑎𝑡(𝑋,𝑀) 𝑔 1 𝑔 2 𝑔 3 𝑃 𝐺 = 1 𝑍 𝑓∈𝑔𝑟(𝐺) 𝑓 𝑍= 𝑣∈𝑟(𝑟𝑣 𝑔𝑟(𝐺) ) 𝑓∈𝑔𝑟(𝐺) 𝑓 𝑖 ( 𝜋 𝑟𝑣 𝑓 𝑖 (𝑣)) What did we win? Use lifted representation during computations, AVOID GROUNDING

Recap: Dependency Networks All devices can be treated identically

Application to Cyber-Security

QA: Queries Avoid groundings! Marginal distribution 𝑃 𝑆𝑖𝑐𝑘(𝑒𝑣𝑒) 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙(𝑒𝑣𝑒,) 𝑇𝑟𝑒𝑎𝑡(𝑒𝑣𝑒, 𝑚 1 ) Conditional distribution 𝑃 𝑆𝑖𝑐𝑘(𝑒𝑣𝑒) 𝐸𝑝𝑖𝑑) 𝑃 𝐸𝑝𝑖𝑑 𝑆𝑖𝑐𝑘 𝑒𝑣𝑒 =𝑡𝑟𝑢𝑒) Most probable assignment MPE: 𝑅=𝑟𝑣(𝑔𝑟(𝐺)) MAP: 𝑅={𝑇𝑟𝑎𝑣𝑒𝑙(𝑒𝑣𝑒),𝑀𝑎𝑛(𝑣𝑖𝑟𝑢𝑠)} Avoid groundings! 𝐸𝑝𝑖𝑑 𝑁𝑎𝑡(𝐷) 𝑀𝑎𝑛(𝑊) 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝑆𝑖𝑐𝑘(𝑋) 𝑇𝑟𝑒𝑎𝑡(𝑋,𝑀) 𝑔 1 𝑔 2 𝑔 3 Argmax and sum not commutative argmax 𝑣∈𝑟(𝑅) 𝑣∈𝑟(𝑅) 𝑃 𝐹 (𝑣) , 𝑅⊆𝑟𝑣 𝑔𝑟(𝐺)

QA: Lifted VE (LVE) Avoid groundings! Poole (2003), de Salvo Braz et al. (2005, 2006), Milch et al. (2008), Taghipour et al. (2013, 2013a) Eliminate all variables not appearing in query Lifted summing out Sum out representative instance Exponentiate result for isomorphic instances Preconditions exist! Count conversion (not part of this tutorial) 𝐸𝑝𝑖𝑑 𝑁𝑎𝑡(𝐷) 𝑀𝑎𝑛(𝑊) 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝑆𝑖𝑐𝑘(𝑋) 𝑇𝑟𝑒𝑎𝑡(𝑋,𝑀) 𝑔 1 𝑔 2 𝑔 3 Avoid groundings!

QA: LVE in Detail E.g., marginal 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙(𝑒𝑣𝑒) Poole (2003), de Salvo Braz et al. (2005, 2006), Milch et al. (2008), Taghipour et al. (2013a, 2013b) E.g., marginal 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙(𝑒𝑣𝑒) Split w.r.t. 𝑇𝑟𝑎𝑣𝑒𝑙(𝑒𝑣𝑒) Eliminate all non-query variables Normalise 𝐸𝑝𝑖𝑑 𝑁𝑎𝑡(𝐷) 𝑀𝑎𝑛(𝑊) 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝑆𝑖𝑐𝑘(𝑋) 𝑇𝑟𝑒𝑎𝑡(𝑋,𝑀) 𝑔 1 𝑔 2 𝑔 3 𝑇𝑟𝑎𝑣𝑒𝑙(𝑒𝑣𝑒) 𝑆𝑖𝑐𝑘(𝑒𝑣𝑒) 𝑇𝑟𝑒𝑎𝑡(𝑒𝑣𝑒,𝑀) 𝐸𝑝𝑖𝑑 𝑁𝑎𝑡(𝐷) 𝑀𝑎𝑛(𝑊) 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝑆𝑖𝑐𝑘(𝑋) 𝑇𝑟𝑒𝑎𝑡(𝑋,𝑀) 𝑔 1 𝑔 2 𝑔 3 𝑇𝑟𝑎𝑣𝑒𝑙(𝑒𝑣𝑒) 𝑆𝑖𝑐𝑘(𝑒𝑣𝑒) 𝑇𝑟𝑒𝑎𝑡(𝑒𝑣𝑒,𝑀) 𝐸𝑝𝑖𝑑 𝑁𝑎𝑡(𝐷) 𝑀𝑎𝑛(𝑊) 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝑆𝑖𝑐𝑘(𝑋) 𝑇𝑟𝑒𝑎𝑡(𝑋,𝑀) 𝑔 1 𝑔 2 𝑔 3

Problem: Many Queries Set of queries Under evidence 𝑃 𝑇𝑟𝑎𝑣𝑒𝑙(𝑒𝑣𝑒) 𝑃 𝑆𝑖𝑐𝑘(𝑏𝑜𝑏) 𝑃 𝑇𝑟𝑒𝑎𝑡(𝑒𝑣𝑒, 𝑚 1 ) 𝑃 𝐸𝑝𝑖𝑑 𝑃 𝑁𝑎𝑡(𝑓𝑙𝑜𝑜𝑑) 𝑃 𝑀𝑎𝑛(𝑣𝑖𝑟𝑢𝑠) Combinations of variables Under evidence 𝑆𝑖𝑐𝑘 𝑋 ′ =𝑡𝑟𝑢𝑒 𝑋 ′ ∈{𝑎𝑙𝑖𝑐𝑒, 𝑒𝑣𝑒} (L)VE restarts from scratch for each query 𝐸𝑝𝑖𝑑 𝑁𝑎𝑡(𝐷) 𝑀𝑎𝑛(𝑀) 𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝑆𝑖𝑐𝑘(𝑋) 𝑇𝑟𝑒𝑎𝑡(𝑋,𝑃) 𝑔 1 𝑔 2 𝑔 3

Our Research Incremental algorithms and data structures to speed up query answering for multiple queries (message passing in a so-called junction tree) Queries with variables, Lifted MPE LJT: Lifted Junction Tree Algorithm Tanya Braun and Ralf Möller. Lifted Junction Tree Algorithm. In Proceedings of KI 2016: Advances in Artificial Intelligence, pages 30–42, 2016. Tanya Braun and Ralf Möller. Preventing Groundings and Handling Evidence in the Lifted Junction Tree Algorithm. In Proceedings of KI 2017: Advances in Artificial Intelligence, pages 85–98, 2017. Tanya Braun and Ralf Möller. Counting and Conjunctive Queries in the Lifted Junction Tree Algorithm. In Postproceedings of the 5th International Workshop on Graph Structures for Knowledge Representation and Reasoning, 2017. Tanya Braun and Ralf Möller. Adaptive Inference on Probabilistic Relational Models. In Proceedings of the 31st Australasian Joint Conference on Artificial Intelligence, 2018 Tanya Braun and Ralf Möller. Parameterised Queries and Lifted Query Answering. In IJCAI-18 Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018. Tanya Braun and Ralf Möller. Lifted Most Probable Explanation. In Proceedings of the International Conference on Conceptual Structures, 2018. Tanya Braun and Ralf Möller. Fusing First-order Knowledge Compilation and the Lifted Junction Tree Algorithm. In Proceedings of KI 2018: Advances in Artificial Intelligence, 2018. Tanya Braun, Rescued from a Sea of Queries: Exact Inference in Probabilistic Relational Models, Dissertation, Universität zu Lübeck, 2019, submitted

QA: Most probable assignment Dawid (1992), Dechter (1999), de Salvo Braz et al. (2006), Apsel and Brafman (2012), Braun and Möller (2018) To all variables: most probable explanation (MPE) (L)VE: maxing out (instead of summing out) (L)JT: message calculation by maxing out Ismorphic instances: identical most probable assignment As before: construction, evidence entering Message passing Only one message pass (from periphery to centre) Max out remaining variables at centre argmax 𝑟𝑣(𝐺) 𝑃 𝐺

QA: Most probable assignment Dechter (1999), Sharma et al. (2018) Braun and Möller (2018) To subset of variables: maximum a posteriori (MAP) argmax 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒,𝐸𝑝𝑖𝑑 𝑟 𝑁𝑎𝑡 𝐷 ,𝑀𝑎𝑛 𝑊 ,𝑆𝑖𝑐𝑘 𝑋 ,𝑇𝑟𝑒𝑎𝑡 𝑋,𝑃 , 𝑟 𝑇𝑟𝑎𝑣𝑒𝑙 𝑋 , 𝑋≠𝑒𝑣𝑒 𝑃 𝐺 MAP a more general case of MPE ∑ and max not commutative! As before: construction, evidence entering, message passing (with summing out) Answer MAP query: get submodel (as before) Sum out non-query variables, max out query variables Assignment to complete parclusters safe

Propositional: Dynamic Model Temporal pattern Instantiate and unroll pattern Infer on unrolled model 𝑓 𝐸 𝑓 𝑡−1 2 𝑓 𝑡−1 3 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑡−1 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚2 𝑡−1 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚1 𝑡−1 𝐸𝑝𝑖𝑑 𝑡−1 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑡−1 𝑓 𝑡 2 𝑓 𝑡 3 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑡 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚2 𝑡 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚1 𝑡 𝐸𝑝𝑖𝑑 𝑡 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑡

Dynamic Model: Inference Problems Marginal distribution query: 𝑃 𝐴 𝜋 𝑖 𝐸 0:𝑡 ) w.r.t. the model: Hindsight: 𝜋<𝑡 (was there an epidemic 𝜋−𝑡 days ago?) Filtering: 𝜋=𝑡 (is there an currently an epidemic?) Prediction: 𝜋>𝑡 (is there an epidemic in 𝜋−𝑡 days?) 𝑓 𝐸 𝑓 𝑡−1 2 𝑓 𝑡−1 3 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑡−1 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚2 𝑡−1 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚1 𝑡−1 𝐸𝑝𝑖𝑑 𝑡−1 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑡−1 𝑓 𝑡 2 𝑓 𝑡 3 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑡 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚2 𝑡 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚1 𝑡 𝐸𝑝𝑖𝑑 𝑡 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑡

Propositional: Dynamic Model Problems with unrolling: Huge model (unrolled for T timesteps) Redundant temporal information and calculations Redundant calculations to answer multiple queries 𝑓 𝐸 𝑓 𝑡−1 2 𝑓 𝑡−1 3 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑡−1 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚2 𝑡−1 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚1 𝑡−1 𝐸𝑝𝑖𝑑 𝑡−1 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑡−1 𝑓 𝑡 2 𝑓 𝑡 3 𝑇𝑟𝑎𝑣𝑒𝑙.𝑒𝑣𝑒 𝑡 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚2 𝑡 𝑇𝑟𝑒𝑎𝑡.𝑒𝑣𝑒. 𝑚1 𝑡 𝐸𝑝𝑖𝑑 𝑡 𝑆𝑖𝑐𝑘.𝑒𝑣𝑒 𝑡

Lifted: Dynamic Model Marginal distribution query: 𝑃 𝐴 𝜋 𝑖 𝐸 0:𝑡 ) w.r.t. the model: Hindsight: 𝜋<𝑡 (was there an epidemic 𝜋−𝑡 days ago?) Filtering: 𝜋=𝑡 (is there an currently an epidemic?) Prediction: 𝜋>𝑡 (is there an epidemic in 𝜋−𝑡 days?) 𝑔 𝐸 𝐸𝑝𝑖𝑑 𝑡−1 𝐸𝑝𝑖𝑑 𝑡 𝑇𝑟𝑎𝑣𝑒𝑙(X) 𝑡−1 𝑇𝑟𝑒𝑎𝑡 (X,M) 𝑡−1 𝑔 𝑡−1 2 𝑔 𝑡−1 3 𝑔 𝑡 2 𝑔 𝑡 3 𝑇𝑟𝑎𝑣𝑒𝑙(X) 𝑡 𝑇𝑟𝑒𝑎𝑡 (X,M) 𝑡 𝑆𝑖𝑐𝑘(𝑋) 𝑡−1 𝑆𝑖𝑐𝑘(𝑋) 𝑡

Our Research Lifted dynamic probabilistic relational models LDJT: Lifted Dynamic Junction Tree Algorithm Gehrke et al. (2018) Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm. In Proceedings of the International Conference on Conceptual Structures, 2018. Gehrke et al. (2018a) Marcel Gehrke, Tanya Braun, and Ralf Möller. Answering Hindsight Queries with Lifted Dynamic Junction Trees. In 8th International Workshop on Statistical Relational AI at the 27th International Joint Conference on Artificial Intelligence, 2018.

Cyber-Security Once Again

Recap: HMMs for Cyber-Security DNS hidden state lbs db webserver lbs lbs DNS webserver webserver observation lbs db Proxy

Application of PRMs Determine what has happened given evidence available Reduction to formal inference problem(s) Query answering MPE Determine Higher Order Event Patterns Match of MPE with Higher Order Patterns Longest Common Subsequence With specific equivalence relations

Something wrong with these models? Distribution only defined if constants are given Need domains of logvars (used in parametrized random variables) Transfer to different domains not directly obvious

And what we might do about it Distribution over domain sizes Expected query answers

Insights Probabilistic Relational Models (PRMs) Statistical Relational AI aka Stochastic Relational AI (StaRAI) We made huge progress to solve practical problems in cyber security Solid theoretical framework New algorithms for practical scalability Hope to have convinced you that StaRAI is worth studying

Overall References Apsel and Brafman (2012) Udi Apsel and Ronen I. Brafman. Exploiting Uniform Assignments in First-Order MPE. Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, 2012. Dawid (1992) Alexander Philip Dawid. Applications of a General Propagation Algorithm for Probabilistic Expert Systems. Statistics and Computing, 2(1):25–36, 1992. Dechter (1999) Rina Dechter. Bucket Elimination: A Unifying Framework for Probabilistic Inference. In Learning and Inference in Graphical Models, pages 75–104. MIT Press, 1999. De Salvo Braz et al. (2005) Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. Lifted First-order Probabilistic Inference. IJCAI-05 Proceedings of the 19th International Joint Conference on Artificial Intelligence, 2005. De Salvo Braz et al. (2006) Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. MPE and Partial Inversion in Lifted Probabilistic Variable Elimination. AAAI-06 Proceedings of the 21st Conference on Artificial Intelligence, 2006. *I would like to thank the IFIS team for their work and contributions! The focus was on specific topics and global references in the tutorial are necessarily incomplete. Apologies to anyone whose work I did not cite.

Overall References Milch et al. (2008) Brian Milch, Luke S. Zettelmoyer, Kristian Kersting, Michael Haimes, and Leslie Pack Kaelbling. Lifted Probabilistic Inference with Counting Formulas AAAI- 08 Proceedings of the 23rd Conference on Artificial Intelligence, 2008. Poole (2003) David Poole. First-order Probabilistic Inference. In Proceedings of the 18th International Joint Conference on Artificial Intelligence, 2003. Sharma et al. (2018) Vishal Sharma, Noman Ahmed Sheikh, Happy Mittal, Vibhav Gogate, and Parag Singla. Lifted Marginal MAP Inference. In Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence 4, 2018. Taghipour et al. (2013) Nima Taghipour, Jesse Davis, and Hendrik Blockeel. A Generalized Counting for Lifted Variable Elimination. In Proceedings of the International Conference on Inductive Logic Programming, pages 107–122, 2013. Taghipour et al. (2013a) Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel. Lifted Variable Elimination: Decoupling the Operators from the Constraint Language. Journal of Artificial Intelligence Research, 47(1):393–439, 2013. Taghipour et al. (2013b) Nima Taghipour, Jesse Davis, and Hendrik Blockeel. First- order decomposition trees. In Advances in Neural Information Processing Systems 26, pages 1052–1060. Curran Associates, Inc., 2013. Zhang and Poole (1994) Nevin L. Zhang and David Poole. A Simple Approach to Bayesian Network Computations. In Proceedings of the 10th Canadian Conference on Artificial Intelligence, pages 171–178, 1994. *I would like to thank the IFIS team for their work and contributions! The focus was on specific topics and global references in the tutorial are necessarily incomplete. Apologies to anyone whose work I did not cite.