EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Professor Ronald L. Carter
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Professor Ronald L. Carter
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
EMT362: Microelectronic Fabrication CMOS ISOLATION TECHNOLOGY Part 1
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture #30 OUTLINE The MOS Capacitor Electrostatics
Long Channel MOS Transistors
Professor Ronald L. Carter
Lecture 19 OUTLINE The MOSFET: Structure and operation
منبع: & کتابMICROELECTRONIC CIRCUITS 5/e Sedra/Smith
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Long Channel MOS Transistors
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Professor Ronald L. Carter
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Last Lecture – MOS Transistor Review (Chap. #3)
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
EXAMPLE 7.1 BJECTIVE Determine the total bias current on an IC due to subthreshold current. Assume there are 107 n-channel transistors on a single chip,
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 20 OUTLINE The MOSFET (cont’d)
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Lecture 20 OUTLINE The MOSFET (cont’d)
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Semiconductor Device Modeling & Characterization Lecture 19
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2003
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc L 28 Dec 02

n-channel enhancement MOSFET in ohmic region 0< VT< VG Channel VS = 0 0< VD< VDS,sat EOx,x> 0 n+ e-e- e- e- e- n+ Depl Reg p-substrate Acceptors VB < 0 L 28 Dec 02

Fully biased n- channel VT calc L 28 Dec 02

Fully biased p- channel VT calc L 28 Dec 02

“Dotted box” approx** L 28 Dec 02

Calculating xi and DVT L 28 Dec 02

MOS energy bands at Si surface for n-channel Fig 8.10** L 28 Dec 02

If xi << xd,max calc. VT from effective DQ’ss Fig 8.11** |Q’d,max|/q (cm-2) xd,max (microns) L 28 Dec 02

Flat band with oxide charge (approx. scale) SiO2 p-Si +<--Vox-->- q(Vox) Ec,Ox q(ffp-cox) q(fm-cox) Ex Eg,ox~8eV EFm Ec EFi EFp q(VFB) Ev VFB= VG-VB, when Si bands are flat Ev L 28 Dec 02

Fully biased n- channel VT calc L 28 Dec 02

If xi ~ xd,max L 28 Dec 02

Calculating VT L 28 Dec 02

Implanted VT Vt per Eq. 9.1.23 in M&K for a MOSFET with an 87-nm-thick gate oxide, Qff/q = 1011 cm-2, N’ = 3.5 X 1011 cm-2, and Na = 2 X 1015 cm-3. Both VS and VB = Figure 9.8 (p. 441) L 28 Dec 02

Mobilities** L 28 Dec 02

M&K Fig. 9.9 (Eq. 9.1.23) L 28 Dec 02

Mobilities** L 28 Dec 02

Subthreshold conduction Below O.S.I., when the total band-bending < 2|fp|, the weakly inverted channel conducts by diffusion like a BJT. Since VGS>VDS, and below OSI, then Na>nS >nD, and electr diffuse S --> D Electron concentration at Source Concentration gradient driving diffusion L 28 Dec 02

M&K Fig.9.10 (p.443) Band diagram along the channel region of an n-channel MOSFET under bias, indicating that the barrier qΦB at the source depends on the gate voltage. L 28 Dec 02

M&K Fig. 9.11 (p.444) Measured subthreshold characteristics of an MOS transistor with a 1.2 μm channel length. The inverse slope of the straight-line portion of this semilogarithmic plot is called the drain-current subthreshold slope S (measured in mV/decade of drain current). L 28 Dec 02

Subthreshold current data Figure 10.1** Figure 11.4* L 28 Dec 02

Mobility variation due to Edepl Figures 11.7,8,9* L 28 Dec 02

Velocity saturation effects Figure 11.10* L 28 Dec 02

Final Exam For BOTH sections, 051 and 001 The Final is comprehensive 8:00 to 10:30 AM Tuesday, December 9 in 206 ACT Cover sheet on web page at http://www.uta.edu/ronc/5340/tests/ The Final is comprehensive 20% to 25% on Test 1 material 20% to 25% on Test 2 material Balance of final on material since Test 2 L 28 Dec 02

References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986 L 28 Dec 02