Marek Basler, Brian T. Ho, John J. Mekalanos  Cell 

Slides:



Advertisements
Similar presentations
Eph-Ephrin Bidirectional Signaling in Physiology and Disease Elena B. Pasquale Cell Volume 133, Issue 1, Pages (April 2008) DOI: /j.cell
Advertisements

A View to a Kill: The Bacterial Type VI Secretion System Brian T. Ho, Tao G. Dong, John J. Mekalanos Cell Host & Microbe Volume 15, Issue 1, Pages 9-21.
Harinath Doodhi, Eugene A. Katrukha, Lukas C. Kapitein, Anna Akhmanova 
Transient Membrane Localization of SPV-1 Drives Cyclical Actomyosin Contractions in the C. elegans Spermatheca  Pei Yi Tan, Ronen Zaidel-Bar  Current.
SMK-1, an Essential Regulator of DAF-16-Mediated Longevity
Harinath Doodhi, Eugene A. Katrukha, Lukas C. Kapitein, Anna Akhmanova 
Pathogen-Mediated Posttranslational Modifications: A Re-emerging Field
Shuhei Yoshida, Masako Kaido, Tomoya S. Kitajima  Developmental Cell 
Community Behavior and Spatial Regulation within a Bacterial Microcolony in Deep Tissue Sites Serves to Protect against Host Attack  Kimberly M. Davis,
Wei-Hsiang Lin, Edo Kussell  Current Biology 
Jun Zhu, John J. Mekalanos  Developmental Cell 
Volume 15, Issue 5, Pages (May 2016)
Colleen T. Skau, David R. Kovar  Current Biology 
Volume 15, Issue 1, Pages (January 2012)
Volume 47, Issue 1, Pages e7 (July 2017)
Volume 129, Issue 2, Pages (April 2007)
mTORC1: Turning Off Is Just as Important as Turning On
Volume 12, Issue 12, Pages (September 2015)
Volume 25, Issue 1, Pages (July 2006)
Not All DDRs Are Created Equal: Non-Canonical DNA Damage Responses
Synapses with Inhibitory Neurons Differentiate Anterior Cingulate from Dorsolateral Prefrontal Pathways Associated with Cognitive Control  Maria Medalla,
Volume 23, Issue 14, Pages (July 2013)
Volume 9, Issue 2, Pages (August 2017)
Protein Interaction Analysis Provides a Map of the Spatial and Temporal Organization of the Ciliary Gating Zone  Daisuke Takao, Liang Wang, Allison Boss,
Volume 8, Issue 1, Pages (July 2014)
Volume 73, Issue 1, Pages 1-3 (January 2012)
Martin Bringmann, Dominique C. Bergmann  Current Biology 
Volume 19, Issue 3, Pages (September 2010)
Volume 23, Issue 6, Pages (December 2012)
Yvonne Stahl, René H. Wink, Gwyneth C. Ingram, Rüdiger Simon 
Volume 135, Issue 6, Pages (December 2008)
Volume 127, Issue 2, Pages (October 2006)
Yuan Lin, David S.W. Protter, Michael K. Rosen, Roy Parker 
Evolution of a Behavioral Shift Mediated by Superficial Neuromasts Helps Cavefish Find Food in Darkness  Masato Yoshizawa, Špela Gorički, Daphne Soares,
The Role of the RNAi Machinery in Heterochromatin Formation
Volume 19, Issue 3, Pages (February 2009)
The Ribosome Emerges from a Black Box
Volume 26, Issue 2, Pages e3 (February 2018)
Phytochromes: Where to Start?
Ethan S. Bromberg-Martin, Masayuki Matsumoto, Okihide Hikosaka  Neuron 
Volume 37, Issue 6, Pages (March 2010)
Powering Reprogramming with Vitamin C
Rewiring Bacteria, Two Components at a Time
A View to a Kill: The Bacterial Type VI Secretion System
Structure and Function of an Actin-Based Filter in the Proximal Axon
A View to a Kill: The Bacterial Type VI Secretion System
Volume 21, Issue 6, Pages e3 (June 2017)
Volume 39, Issue 2, Pages (October 2016)
Volume 24, Issue 5, Pages (March 2014)
Tracking Vibrio cholerae Cell-Cell Interactions during Infection Reveals Bacterial Population Dynamics within Intestinal Microenvironments  Yang Fu, Brian.
Volume 80, Issue 6, Pages (December 2013)
Regulation of Golgi Cisternal Progression by Ypt/Rab GTPases
Volume 14, Issue 7, Pages (February 2016)
Yuichiro Mishima, Yukihide Tomari  Molecular Cell 
MT Neurons Combine Visual Motion with a Smooth Eye Movement Signal to Code Depth-Sign from Motion Parallax  Jacob W. Nadler, Mark Nawrot, Dora E. Angelaki,
Volume 17, Issue 4, Pages (October 2009)
Volume 139, Issue 4, Pages (November 2009)
Analyzing Fission Yeast Multidrug Resistance Mechanisms to Develop a Genetically Tractable Model System for Chemical Biology  Shigehiro A. Kawashima,
Translocation of a Vibrio cholerae Type VI Secretion Effector Requires Bacterial Endocytosis by Host Cells  Amy T. Ma, Steven McAuley, Stefan Pukatzki,
Volume 22, Issue 14, Pages (July 2012)
The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer  Peter David Ringel, Di Hu, Marek Basler 
Interaxonal Interaction Defines Tiled Presynaptic Innervation in C
Tuo Li, Jin Chen, Ileana M. Cristea  Cell Host & Microbe 
Cargo Regulates Clathrin-Coated Pit Dynamics
Imaging Type VI Secretion-Mediated Bacterial Killing
Dual Detection of Chromosomes and Microtubules by the Chromosomal Passenger Complex Drives Spindle Assembly  Boo Shan Tseng, Lei Tan, Tarun M. Kapoor,
Volume 21, Issue 6, Pages (March 2011)
Taro Ohkawa, Matthew D. Welch  Current Biology 
Translocation of a Vibrio cholerae Type VI Secretion Effector Requires Bacterial Endocytosis by Host Cells  Amy T. Ma, Steven McAuley, Stefan Pukatzki,
The Tangled Web of Signaling in Innate Immunity
Presentation transcript:

Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions  Marek Basler, Brian T. Ho, John J. Mekalanos  Cell  Volume 152, Issue 4, Pages 884-894 (February 2013) DOI: 10.1016/j.cell.2013.01.042 Copyright © 2013 Elsevier Inc. Terms and Conditions

Cell 2013 152, 884-894DOI: (10.1016/j.cell.2013.01.042) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 1 P. aeruginosa T6SS Preferentially Targets T6SS-Positive V. cholerae VcT6S+ indicates V. cholerae clpV-mCherry2, VcT6S− indicates V. cholerae ΔvipA clpV-mCherry2, PaT6S+ indicates P. aeruginosa ΔretS clpV1-gfp, and PaT6S− indicates P. aeruginosa ΔretS ΔvipA1 clpV1-gfp. PaRetS− indicates P. aeruginosa ΔretS, and PaRetS+ indicates P. aeruginosa. (A) Examples of morphological changes of V. cholerae seen in mixtures of P. aeruginosa ΔretS clpV1-gfp (T6SS+, green) and V. cholerae clpV-mCherry2 (T6SS+, red). 4.5 × 4.5 μm fields are shown. (B) Example of a dilution series used to enumerate V. cholerae recovery from a competition with P. aeruginosa. (C–G) 30 × 30 μm representative field of cells with a 4× magnified 3 × 3 μm inset (marked by box). Bar in (C) is 3 μm and applies to (C)–(G). Arrows point to examples of round V. cholerae cells. (C–E) Average number of round V. cholerae cells per 30 × 30 μm field (±SD) is shown for each mixture (n fields were analyzed); p value compared to mixture in (C). (C) P. aeruginosa ΔretS clpV1-gfp (T6SS+, green) mixed with V. cholerae clpV-mCherry2 (T6SS+, red). (D) P. aeruginosa ΔretS ΔvipA1 clpV1-gfp (T6SS−, green) mixed with V. cholerae clpV-mCherry2 (T6SS+, red). (E) P. aeruginosa ΔretS clpV1-gfp (T6SS+, green) mixed with V. cholerae ΔvipA clpV-mCherry2 (T6SS−, red). (F and G) V. cholerae clpV-mCherry2 (T6SS+, red) and V. cholerae ΔvipA clpV-gfp (T6SS−, green) strains were mixed at equal ratios with (F) P. aeruginosa ΔretS (T6SS+, unlabeled) and (G) P. aeruginosa (T6SS+, unlabeled). (H) Quantification of number of round V. cholerae cells detected per 30 × 30 μm field (n = 60) for mixtures shown in (F) and (G). See also Movies S1 and S2 and Tables S1 and S2. Cell 2013 152, 884-894DOI: (10.1016/j.cell.2013.01.042) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 2 P. aeruginosa T6SS Effector Tse1 Is Responsible for V. cholerae Cell Rounding, but Tse Effectors Are Dispensable for Dueling and V. cholerae Growth Inhibition 30 × 30 μm representative field of cells with a 4× magnified 3 × 3 μm inset (marked by box) is shown for (A)–(E), (G), and (H). Bar in (A) is 3 μm and applies to (A)–(E), (G), and (H). Strain abbreviations were as used in Figure 1. n.s., not statistically significant (p > 0.01). (A–E) Arrows point to examples of round V. cholerae cells. Average number of round V. cholerae cells per 30 × 30 μm field (±SD) is shown for each mixture (n fields were analyzed); p value is compared to mixture in Figure 1C. For (A)–(D), V. cholerae clpV-mCherry2 strain was mixed with (A) P. aeruginosa ΔretS Δtse1 clpV1-gfp, (B) P. aeruginosa ΔretS Δtse2 clpV1-gfp, (C) P. aeruginosa ΔretS Δtse3 clpV1-gfp, and (D) P. aeruginosa ΔretS Δtse1-3 clpV1-gfp. (E) P. aeruginosa ΔretS clpV1-gfp was mixed with V. cholerae/pBAD24-Tsi1-mCherry2 strain. (F) Summary of competition assays for P. aeruginosa and V. cholerae mixtures. Data are presented as mean of log10CFU of recovered V. cholerae with error bar representing SD (n = 8–19). (G and H) ClpV1-GFP localization was followed for 3 min and was temporally color coded. Arrows point to examples of dueling P. aeruginosa cells. Average number of active cells and dueling cells per 30 × 30 μm field (±SD) is shown (n fields were analyzed); p value is compared to strain in (G). (G) P. aeruginosa ΔretS clpV1-gfp and (H) P. aeruginosa ΔretS Δtse1-3 clpV1-gfp. (I) Color scale used to temporally color code ClpV1-GFP signal. See also Movie S3 and Tables S1 and S3. Cell 2013 152, 884-894DOI: (10.1016/j.cell.2013.01.042) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 3 T6SS Dueling Depends on PpkA, PppA, and TagT (A–C) ClpV1-GFP localization was followed for 3 min and temporally color coded (color scale in Figure 2I). 30 × 30 μm representative field of cells with a 4× magnified 3 × 3 μm inset (marked by box) is shown for (A)–(C). Bar in (A) is 3 μm and applies to (A)–(C). Average number of active cells and dueling cells per 30 × 30 μm field (±SD) is shown (n fields were analyzed); p value is compared to parental strain in Figure 2G. (A) P. aeruginosa ΔretS ΔppkA clpV1-gfp, (B) P. aeruginosa ΔretS ΔpppA ΔclpV1-gfp, and (C) P. aeruginosa ΔretS ΔtagT clpV1-gfp. See also Movie S3 and Table S3. Cell 2013 152, 884-894DOI: (10.1016/j.cell.2013.01.042) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 4 PpkA, PppA, and TagT Are Important for P. aeruginosa Targeting of the Prey Strain abbreviations were as used in Figure 1. n.s., not statistically significant (p > 0.01). (A) Quantification of number of round V. cholerae cells per 30 × 30 μm field for indicated mixtures (n = 60 for VcT6S+/PaT6S+ and VcT6S+/PaT6S− mixtures, and n = 30 for all other indicated mixtures). (B) Summary of competition assays for P. aeruginosa and V. cholerae mixtures. Data are presented as mean of log10CFU of recovered V. cholerae with error bar representing SD (n = 6–19). (C) Competition assays for P. aeruginosa and V. cholerae mixtures at 10:1 ratio. Data are presented as mean of log10CFU of recovered V. cholerae with error bars representing SD (n = 5–10). See also Table S1. Cell 2013 152, 884-894DOI: (10.1016/j.cell.2013.01.042) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 5 A. baylyi Has Functional T6SS and Is Targeted by P. aeruginosa Strain abbreviations were as used in Figure 1. AbT6S+ indicates A. baylyi parental strain, and AbT6S− indicates A. baylyi ΔT6SS. (A) Example of a dilution series used to enumerate E. coli survival in mixtures with A. baylyi or V. cholerae. (B) Example of a dilution series used to enumerate A. baylyi survival in mixtures with P. aeruginosa. (C) Summary of competition assays for P. aeruginosa and A. baylyi mixtures. Data are presented as mean of log10CFU of recovered A. baylyi with error bar representing SD (n = 3–8). Cell 2013 152, 884-894DOI: (10.1016/j.cell.2013.01.042) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 6 Model for TagQRST-Mediated T6SS Aiming (A) Regulation of the T6SS response in P. aeruginosa. (A1) T6SS assault from V. cholerae is sensed by the TagQRST/PpkA signal cascade (orange) to phosphorylate Fha1 (blue). (A2) Phosphorylated Fha1 interacts with the baseplate complex (gray), locking it in place and allowing assembly of the Hcp/VgrG tube/spike (red) and VipA/B sheath (green). (A3) Sheath contraction fires the retaliatory P. aeruginosa tube/spike complex at V. cholerae. ClpV (light purple) then disassembles the contracted sheath. (A4–A6) (A4) The baseplate can then be reused to assemble an additional tube/spike/sheath complex, or (A5) PppA (yellow) can dephosphorylate Fha1, (A6) inactivating or disassembling the baseplate complex. The P. aeruginosa T6SS is now ready to respond to new T6SS assaults. (B) T6SS interactions between P. aeruginosa and V. cholerae. (B1) V. cholerae T6SS will spontaneously fire, occasionally hitting a nearby P. aeruginosa cell. (B2–B6) P. aeruginosa senses the assault and builds its T6SS organelle at the location of the assault. (B7 and B8) (B7) P. aeruginosa fires its T6SS organelle back at the V. cholerae cell. The baseplate is then recycled to allow for multiple firing events, or (B8) the Fha1 complex is dephosphorylated by PppA and the baseplate complex is disassembled and free to reform at a new location. (B5) Meanwhile, V. cholerae continues to fire its T6SS organelle arbitrarily in a different location and direction. (B8) After the retaliatory attack from P. aeruginosa, the V. cholerae cell dies. Cell 2013 152, 884-894DOI: (10.1016/j.cell.2013.01.042) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure S1 P. aeruginosa Is Resistant to T6SS of A. baylyi and V. cholerae and Does Not Target E. coli, Related to Figures 1, 2, 4, and 5 PaT6S+ indicates P. aeruginosa ΔretS clpV1-gfp, PaT6S− indicates P. aeruginosa ΔretS ΔvipA1 clpV1-gfp. (A) Summary of competition assays for P. aeruginosa and V. cholerae mixtures. Data are presented as mean of Log10CFU of recovered P. aeruginosa with error bar representing standard deviation (n = 8). VcT6S+ indicates V. cholerae clpV-mCherry2, VcT6S− indicates V. cholerae ΔvipA clpV-mCherry2. (B) Summary of competition assays for P. aeruginosa and A. baylyi mixtures. Data are presented as mean of Log10CFU of recovered A. baylyi with error bar representing standard deviation (n = 8). AbT6S+ indicates A. baylyi parental strain, AbT6S− indicates A. baylyi ΔT6SS. (C) Summary of competition assays for P. aeruginosa and E. coli mixtures. Data are presented as mean of Log10CFU of recovered E. coli with error bar representing standard deviation (n = 15). Cell 2013 152, 884-894DOI: (10.1016/j.cell.2013.01.042) Copyright © 2013 Elsevier Inc. Terms and Conditions