Negative Numbers: Dividing – Pattern spotting

Slides:



Advertisements
Similar presentations
Dividing a Decimal by a Decimal. Dividing Whole Numbers 12 ÷ 2 = 120 ÷ 20 = 1200 ÷ 200 = ÷ 2000 = Multiply both 12 and 2 by 10 Multiply.
Advertisements

Adding & Subtracting Decimals I will add and subtract decimals.
Visit:
Interesting Integers – Part Dos
Godrej Prakriti Sodepur | Godrej Prakriti Kolkata
Giftalove Best Cake Offers
Factors, multiple, primes: Factors from prime factors
Transformations: Reflecting a shape using y = x or y= -x
Pythagoras: Identify the hypotenuse
Notes 9-5: Simplifying Complex Numbers
Fractions: Multiplying or dividing an integer by a fraction
Negative Numbers: Adding & Subtracting together
Rounding and estimating: How many significant figures?
Proportion: Inverse proportion (x and y)
Fractions: Four operations: setting them up
Fractions: Ready to be added?
סדר דין פלילי – חקיקה ומהות ההליך הפלילי
Steps to solve simple linear simultaneous equations
Factors, Multiples, Primes: Highest common factor
Factors, multiple, primes: Prime factors

1-8 Multiplying and Dividing Integers
Decimals: Multiplying decimals

Differentiation: Basic differentiation
Multiplying Integers SAME SIGNS??? Answer will be POSITIVE. ex)
Representing data: Scatter diagrams – correlation strength
Fractions of Amounts: Reverse

Decimals: Multiplying by 2.5
Decimals: Multiply or divide by 0.5?
Fractions: Ordering Fractions
Decimals: Dividing decimals
Transformations: Reflecting a shape using x = a or y = b
Negative Numbers: Multiplying & Dividing together
Rounding: 1 Decimal Place
Ratio: Equivalent ratio
Ratio: Sharing in a Ratio 2
For more videos visit mrbartonmaths.com/videos
You must show all steps of your working out.
Polynomials 3: Finding remainders
Ratio: Simplifying ratio
Proportion: Direct proportion (rulers)
Fractions: Equivalent Fractions
Straight line graphs: Drawing appropriate axes
Negative Numbers: Multiplying – Pattern spotting
Question 1.
Rearranging formula: Is
Fractions: Fractions of fractions
Indices: When can you use the multiplication law?
Straight line graphs: Horizontal and vertical lines
Rounding and estimating: Spot the significant figure
Power and indices: Reciprocals
Fractions: Simplifying Fractions
Probability: Could it be a probability?
Ratio: Sharing in a Ratio 1
Proportion: Direct proportion (x and y)
Factors, multiple, primes: Multiples
Fractions: Simplifies to a unit fraction?
Straight line graphs: Horizontal and vertical lines
Standard Form: Multiplying powers of 10
Bearings: Can this be a bearing?
Visit us:
Standard form: In standard form?
Simplifying Expressions: What are like terms?
Coordinates: Naming 2D coordinates – quadrant 1
Decimals: Dividing decimals – pattern spotting
Negative Numbers: Subtracting – Pattern spotting
Decimals: Adding decimals – carry
Divide 9 × by 3 ×
Presentation transcript:

Negative Numbers: Dividing – Pattern spotting Reflect Your Turn 15÷(−3)= ? −15 ÷3= ? −15 ÷(−3)= ? Pattern For more videos visit mrbartonmaths.com/videos

15÷3= 15÷(−3)= 12÷3= 12÷(−3)= 9÷3= 9÷(−3)= 6÷3= 6÷(−3)= 3÷3= 3÷(−3)= 0÷3= 0÷(−3)= (−3)÷3= (−3)÷(−3)= (−6)÷3= (−6)÷(−3)= (−9)÷3= (−9)÷(−3)= (−12)÷3= (−12)÷(−3)= (−15)÷3= (−15)÷(−3)= . . . . . . (−36)÷3= (−36)÷(−3)= (−81)÷3= (−81)÷(−3)= @mrbartonmaths

15÷3=5 15÷ −3 =−5 12÷3=4 12÷ −3 =−4 9÷3=3 9÷ −3 =−3 6÷3=2 6÷ −3 =−2 3÷3=1 3÷ −3 =−1 0÷3=0 0÷(−3)=0 −3 ÷3=−1 (−3)÷(−3)=1 −6 ÷3=−2 (−6)÷(−3)=2 −9 ÷3=−3 (−9)÷(−3)=3 −12 ÷3=−4 (−12)÷(−3)=4 −15 ÷3=−5 (−15)÷(−3)=5 . . . . . . −36 ÷3=−12 (−36)÷(−3)=12 −81 ÷3=−27 (−81)÷(−3)=27 @mrbartonmaths

12÷(−2)= −12 ÷(−2)= (−12)÷2= −12 ÷(−2)÷2= −12 ÷ −2 ÷ −2 = Your Turn @mrbartonmaths

12÷ −2 =−6 −12 ÷(−2)=6 −12 ÷2=−6 −12 ÷(−2)÷2=3 −12 ÷ −2 ÷ −2 =−3 Your Turn - answers 12÷ −2 =−6 −12 ÷(−2)=6 −12 ÷2=−6 −12 ÷(−2)÷2=3 −12 ÷ −2 ÷ −2 =−3 @mrbartonmaths